1. State selective population of H2(v″=1, J″=1) and D2(v″=1, J″=2) and rotational relaxation in collisions with H2, D2, and He.
- Author
-
Meier, W., Ahlers, G., and Zacharias, H.
- Subjects
- *
HYDROGEN , *HELIUM , *COLLISIONS (Nuclear physics) , *RELAXATION phenomena , *ENERGY transfer - Abstract
Single rotational states were populated in vibrationally excited hydrogen by stimulated Raman pumping. The population in H2 X 1∑+g(v″=0,1) and D2 X 1∑+g(v″=0,1) was probed state selectively by tunable vacuum ultraviolet (VUV) laser radiation around λ=110 nm, and the fluorescence induced when exciting the hydrogen molecules in the (0–0), (1–0), (2–0), (3–1), and (4–1) Lyman bands of the (B 1∑+u←X 1∑+g) transition monitored. From a comparison of line heights, the stimulated Raman pumping efficiency is estimated to be 30%–50% in the focal volume. Rotational transitions in X 1∑+g(v″=1) were induced in collisions with H2, D2, and He. State-to-state rotational relaxation rates were measured for the (J″=1→J″=3) transition in H2(v″=1) and for the (J″=2→J″=0,4) transitions in D2(v″=1). These rates were found to be generally higher than the corresponding previously determined ones in ground state hydrogen, in qualitative accord with recent theoretical calculations. A comparison with available theoretical state-to-state cross sections shows that the rates obtained with these cross sections are generally lower than the relaxation rates directly measured in this work. [ABSTRACT FROM AUTHOR]
- Published
- 1986
- Full Text
- View/download PDF