Xugang Guo, Zhou, Nanjia, Lou, Sylvia J., Hennek, Jonathan W., Ortiz, Rocío Ponce, Butler, Melanie R., Boudreault, Pierre-Luc T., Strzalka, Joseph, Morin, Pierre-Olivier, Leclerc, Mario, López Navarrete, Juan T., Ratner, Mark A., Lin X. Chen, Chang, Robert P. H., Facchetti, Antonio, and Marks, Tobin J.
Rational creation of polymeric semiconductors from novel building blocks is critical to polymer solar cell (PSC) development. We report a new series of bithiopheneimide-based donor-acceptor copolymers for bulk-heterojunction (BHJ) PSCs. The bithiopheneimide electron-deficiency compresses polymer bandgaps and lowers the HOMOs—essential to maximize power conversion efficiency (PCE). While the dithiophene bridge progression R2Si→R2Ge minimally impacts bandgaps, it substantially alters the HOMO energies. Furthermore, imide N-substituent variation has negligible impact on polymer opto-electrical properties, but greatly affects solubility and microstructure. Grazing incidence wide-angle X-ray scattering (GIWAXS) indicates that branched N-alkyl substituents increased polymer π-π spacings vs linear N-alkyl substituents, and the dithienosilole-based PBTISi series exhibits more ordered packing than the dithienogermole-based PBTIGe analogues. Further insights into structure-property-device performance correlations are provided by a thieno[3,4-c]pyrrole-4,6-dione (TPD)-dithienosilole copolymer PTPDSi. DFT computation and optical spectroscopy show that the TPD-based polymers achieve greater subunit-subunit coplanarity via intramolecular (thienyl)S···O(carbonyl) interactions, and GIWAXS indicates that PBTISi-C8 has lower lamellar ordering, but closer π-π spacing than does the TPD-based analogue. Inverted BHJ solar cells using bithiopheneimide-based polymer as donor and PC71BM as acceptor exhibit promising device performance with PCEs up to 6.41% and Voc > 0.80 V. In analogous cells, the TPD analogue exhibits 0.08 V higher Voc with an enhanced PCE of 6.83%, mainly attributable to the lower-lying HOMO induced by the higher imide group density. These results demonstrate the potential of BTI-based polymers for high-performance solar cells, and provide generalizable insights into structure-property relationships in TPD, BTI, and related polymer semiconductors. [ABSTRACT FROM AUTHOR]