1. PacBio Full-Length Transcriptome of a Tetraploid Sinocyclocheilus multipunctatus Provides Insights into the Evolution of Cavefish.
- Author
-
Zhang, Renyi, Duan, Qian, Luo, Qi, and Deng, Lei
- Subjects
- *
LINCRNA , *TRANSCRIPTOMES , *GOLDFISH , *CARP , *MOLECULAR phylogeny , *CELLULAR signal transduction - Abstract
Simple Summary: As a national second-class animal in China, it is urgent to protect the wild population resources of Sinocyclocheilus. In this study, we constructed the first full-length transcriptome of Sinocyclocheilus multipunctatus from the molecular perspective, analyzed and inferred its phylogenetic relationships, divergence time, and whole-genome duplication events, and screened 220 positive selection genes involved in gene control, signal transduction, immune response, and other processes from the A- and B-subgenome of S. multipunctatus. This will provide basic support for future evolutionary and genomic studies on the cave adaptation mechanism of this species. Sinocyclocheilus multipunctatus is a second-class nationally protected wild animal in China. As one of the cavefish, S. multipunctatus has strong adaptability to harsh subterranean environments. In this study, we used PacBio SMRT sequencing technology to generate a first representative full-length transcriptome for S. multipunctatus. Sequence clustering analysis obtained 232,126 full-length transcripts. Among all transcripts, 40,487 were annotated in public databases, while 70,300 microsatellites, 2384 transcription factors, and 16,321 long non-coding RNAs were identified. The phylogenetic tree showed that S. multipunctatus shows a closer relationship to Carassius auratus and Cyprinus carpio, phylogenetically diverging from the common ancestor ~14.74 million years ago (Mya). We also found that between 15.6 and 17.5 Mya, S. multipunctatus also experienced an additional whole-genome duplication (WGD) event, which may have promoted the species evolution of S. multipunctatus. Meanwhile, the overall rates of evolutionary of polyploid S. multipunctatus were significantly higher than those of the other cyprinids, and 220 positively selected genes (PSGs) were identified in two sub-genomes of S. multipunctatus. These PSGs are likely to fulfill critical roles in the process of adapting to diverse cave environments. This study has the potential to facilitate future investigations into the genomic characteristics of S. multipunctatus and provide valuable insights into revealing the evolutionary history of polyploid S. multipunctatus. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF