Background and objective: The lack of practical tools for quick and objective testing of sleepiness has become one of the critical barriers to reducing the threats of sleep loss to public health, productivity, and safety. The present analysis aimed to examine whether sleepiness can be measured quickly, directly, objectively, and in absolute terms. Participants and methods: The resting electroencephalogram (EEG) was recorded every other hour during a 43-61-h period of wakefulness in 15 young people. Using the sets of single-Hz powers (1-16 Hz) obtained during the first minute of eyes-closed relaxation, spectral alert (SAC) and drowsy component (SDC) scores were computed. Weights for SAC scoring were derived from differences between spectra for extreme (alert and sleepy) sub-states or distant (first and forth) deprivation phases. Weights for SDC scoring were obtained by correlating the time courses of single-Hz powers with the time course of either subjective or objective sleepiness measures. Results: The scores allowed differentiation of alertness-sleepiness sub-states and occipital scores changed their sign at the boundary between alertness and sleepiness states. Conclusion: SAC and SDC scoring of the EEG signal recorded during the first minute of eyes-closed relaxation can be applied in simple, quick, direct, and objective sleepiness testing. [ABSTRACT FROM AUTHOR]