1. Emulation of wildland fire spread simulation using deep learning.
- Author
-
Allaire, Frédéric, Mallet, Vivien, and Filippi, Jean-Baptiste
- Subjects
- *
WILDFIRES , *FIRE risk assessment , *DEEP learning , *APPROXIMATION error , *SURFACE area , *FLAME spread , *COMPUTER simulation - Abstract
Numerical simulation of wildland fire spread is useful to predict the locations that are likely to burn and to support decision in an operational context, notably for crisis situations and long-term planning. For short-term, the computational time of traditional simulators is too high to be tractable over large zones like a country or part of a country, especially for fire danger mapping. This issue is tackled by emulating the area of the burned surface returned after simulation of a fire igniting anywhere in Corsica island and spreading freely during one hour, with a wide range of possible environmental input conditions. A deep neural network with a hybrid architecture is used to account for two types of inputs: the spatial fields describing the surrounding landscape and the remaining scalar inputs. After training on a large simulation dataset, the network shows a satisfactory approximation error on a complementary test dataset with a MAPE of 32.8%. The convolutional part is pre-computed and the emulator is defined as the remaining part of the network, saving significant computational time. On a 32-core machine, the emulator has a speed-up factor of several thousands compared to the simulator and the overall relationship between its inputs and output is consistent with the expected physical behavior of fire spread. This reduction in computational time allows the computation of one-hour burned area map for the whole island of Corsica in less than a minute, opening new application in short-term fire danger mapping. • Wildfires lasting one hour are simulated in a wide range of environmental conditions. • A large simulation database is used to train a hybrid deep neural network emulator. • The emulator estimates the area burned with a speed-up factor of several thousands • The emulator results are consistent with typical behavior of wildland fire spread. • Emulation opens perspectives for fast short-term fire danger high-resolution mapping. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF