202 results
Search Results
2. Secretion of Rhoptry and Dense Granule Effector Proteins by Nonreplicating Toxoplasma gondii Uracil Auxotrophs Controls the Development of Antitumor Immunity.
- Author
-
Fox, Barbara A., Sanders, Kiah L., Rommereim, Leah M., Guevara, Rebekah B., and Bzik, David J.
- Subjects
SECRETION ,PROTEINS ,TOXOPLASMA gondii ,ANTINEOPLASTIC agents ,URACIL ,TUMOR microenvironment - Abstract
Nonreplicating type I uracil auxotrophic mutants of Toxoplasma gondii possess a potent ability to activate therapeutic immunity to established solid tumors by reversing immune suppression in the tumor microenvironment. Here we engineered targeted deletions of parasite secreted effector proteins using a genetically tractable Δku80 vaccine strain to show that the secretion of specific rhoptry (ROP) and dense granule (GRA) proteins by uracil auxotrophic mutants of T. gondii in conjunction with host cell invasion activates antitumor immunity through host responses involving CD8α
+ dendritic cells, the IL-12/interferon-gamma (IFN-γ) TH 1 axis, as well as CD4+ and CD8+ T cells. Deletion of parasitophorous vacuole membrane (PVM) associated proteins ROP5, ROP17, ROP18, ROP35 or ROP38, intravacuolar network associated dense granule proteins GRA2 or GRA12, and GRA24 which traffics past the PVM to the host cell nucleus severely abrogated the antitumor response. In contrast, deletion of other secreted effector molecules such as GRA15, GRA16, or ROP16 that manipulate host cell signaling and transcriptional pathways, or deletion of PVM associated ROP21 or GRA3 molecules did not affect the antitumor activity. Association of ROP18 with the PVM was found to be essential for the development of the antitumor responses. Surprisingly, the ROP18 kinase activity required for resistance to IFN-γ activated host innate immunity related GTPases and virulence was not essential for the antitumor response. These data show that PVM functions of parasite secreted effector molecules, including ROP18, manipulate host cell responses through ROP18 kinase virulence independent mechanisms to activate potent antitumor responses. Our results demonstrate that PVM associated rhoptry effector proteins secreted prior to host cell invasion and dense granule effector proteins localized to the intravacuolar network and host nucleus that are secreted after host cell invasion coordinately control the development of host immune responses that provide effective antitumor immunity against established ovarian cancer. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF
3. Spatiotemporal cytoskeleton organizations determine morphogenesis of multicellular trichomes in tomato.
- Author
-
Chang, Jiang, Xu, Zhijing, Li, Meng, Yang, Meina, Qin, Haiyang, Yang, Jie, and Wu, Shuang
- Subjects
TRICHOMES ,TOMATOES ,BOTANY ,CONTRACTILE proteins ,CYTOLOGY ,CYTOSKELETON ,MICROTUBULES - Abstract
Plant trichomes originate from epidermal cell, forming protective structure from abiotic and biotic stresses. Different from the unicellular trichome in Arabidopsis, tomato trichomes are multicellular structure and can be classified into seven different types based on cell number, shape and the presence of glandular cells. Despite the importance of tomato trichomes in insect resistance, our understanding of the tomato trichome morphogenesis remains elusive. In this study, we quantitatively analyzed morphological traits of trichomes in tomato and further performed live imaging of cytoskeletons in stably transformed lines with actin and microtubule markers. At different developmental stages, two types of cytoskeletons exhibited distinct patterns in different trichome cells, ranging from transverse, spiral to longitudinal. This gradual transition of actin filament angle from basal to top cells could correlate with the spatial expansion mode in different cells. Further genetic screen for aberrant trichome morphology led to the discovery of a number of independent mutations in SCAR/WAVE and ARP2/3 complex, which resulted in actin bundling and distorted trichomes. Disruption of microtubules caused isotropic expansion while abolished actin filaments entirely inhibited axial extension of trichomes, indicating that microtubules and actin filaments may control distinct aspects of trichome cell expansion. Our results shed light on the roles of cytoskeletons in the formation of multicellular structure of tomato trichomes. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
4. Expression of a novel class of bacterial Ig-like proteins is required for IncHI plasmid conjugation.
- Author
-
Hüttener, Mário, Prieto, Alejandro, Aznar, Sonia, Bernabeu, Manuel, Glaría, Estibaliz, Valledor, Annabel F., Paytubi, Sonia, Merino, Susana, Tomás, Joan, and Juárez, Antonio
- Subjects
PLASMIDS ,BACTERIAL proteins ,BACTERIAL cell surfaces ,CELL anatomy ,MOBILE genetic elements ,CELL motility - Abstract
Antimicrobial resistance (AMR) is currently one of the most important challenges to the treatment of bacterial infections. A critical issue to combat AMR is to restrict its spread. In several instances, bacterial plasmids are involved in the global spread of AMR. Plasmids belonging to the incompatibility group (Inc)HI are widespread in Enterobacteriaceae and most of them express multiple antibiotic resistance determinants. They play a relevant role in the recent spread of colistin resistance. We present in this report novel findings regarding IncHI plasmid conjugation. Conjugative transfer in liquid medium of an IncHI plasmid requires expression of a plasmid-encoded, large-molecular-mass protein that contains an Ig-like domain. The protein, termed RSP, is encoded by a gene (ORF R0009) that maps in the Tra2 region of the IncHI1 R27 plasmid. The RSP protein is exported outside the cell by using the plasmid-encoded type IV secretion system that is also used for its transmission to new cells. Expression of the protein reduces cell motility and enables plasmid conjugation. Flagella are one of the cellular targets of the RSP protein. The RSP protein is required for a high rate of plasmid transfer in both flagellated and nonflagellated Salmonella cells. This effect suggests that RSP interacts with other cellular structures as well as with flagella. These unidentified interactions must facilitate mating pair formation and, hence, facilitate IncHI plasmid conjugation. Due to its location on the outer surfaces of the bacterial cell, targeting the RSP protein could be a means of controlling IncHI plasmid conjugation in natural environments or of combatting infections caused by AMR enterobacteria that harbor IncHI plasmids. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
5. Telomere dysfunction impairs epidermal stem cell specification and differentiation by disrupting BMP/pSmad/P63 signaling.
- Author
-
Liu, Na, Yin, Yu, Wang, Haiying, Zhou, Zhongcheng, Sheng, Xiaoyan, Fu, Haifeng, Guo, Renpeng, Wang, Hua, Yang, Jiao, Gong, Peng, Ning, Wen, Ju, Zhenyu, Liu, Yifei, and Liu, Lin
- Subjects
TELOMERES ,CELL differentiation ,STEM cells ,CHROMOSOME structure ,HAIR follicles ,PREMATURE aging (Medicine) - Abstract
Telomere shortening is associated with aging and age-associated diseases. Additionally, telomere dysfunction resulting from telomerase gene mutation can lead to premature aging, such as apparent skin atrophy and hair loss. However, the molecular signaling linking telomere dysfunction to skin atrophy remains elusive. Here we show that dysfunctional telomere disrupts BMP/pSmad/P63 signaling, impairing epidermal stem cell specification and differentiation of skin and hair follicles. We find that telomere shortening mediated by Terc loss up-regulates Follistatin (Fst), inhibiting pSmad signaling and down-regulating P63 and epidermal keratins in an ESC differentiation model as well as in adult development of telomere-shortened mice. Mechanistically, short telomeres disrupt PRC2/H3K27me3-mediated repression of Fst. Our findings reveal that skin atrophy due to telomere dysfunction is caused by a previously unappreciated link with Fst and BMP signaling that could be explored in the development of therapies. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
6. miR-210 controls the evening phase of circadian locomotor rhythms through repression of Fasciclin 2.
- Author
-
Niu, Ye, Liu, Zhenxing, Nian, Xiaoge, Xu, Xuehan, and Zhang, Yong
- Subjects
CIRCADIAN rhythms ,CELL adhesion molecules ,FRUIT flies ,MOLECULAR clock ,NON-coding RNA ,BINDING sites - Abstract
Circadian clocks control the timing of animal behavioral and physiological rhythms. Fruit flies anticipate daily environmental changes and exhibit two peaks of locomotor activity around dawn and dusk. microRNAs are small non-coding RNAs that play important roles in post-transcriptional regulation. Here we identify Drosophila miR-210 as a critical regulator of circadian rhythms. Under light-dark conditions, flies lacking miR-210 (miR-210
KO ) exhibit a dramatic 2 hrs phase advance of evening anticipatory behavior. However, circadian rhythms and molecular pacemaker function are intact in miR-210KO flies under constant darkness. Furthermore, we identify that miR-210 determines the evening phase of activity through repression of the cell adhesion molecule Fasciclin 2 (Fas2). Ablation of the miR-210 binding site within the 3’ UTR of Fas2 (Fas2ΔmiR-210 ) by CRISPR-Cas9 advances the evening phase as in miR-210KO . Indeed, miR-210 genetically interacts with Fas2. Moreover, Fas2 abundance is significantly increased in the optic lobe of miR-210KO . In addition, overexpression of Fas2 in the miR-210 expressing cells recapitulates the phase advance behavior phenotype of miR-210KO . Together, these results reveal a novel mechanism by which miR-210 regulates circadian locomotor behavior. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
7. Functionalization of CD36 Cardiovascular Disease and Expression Associated Variants by Interdisciplinary High Throughput Analysis.
- Author
-
Madan, Namrata, Ghazi, Andrew R., Kong, Xianguo, Chen, Edward S., Shaw, Chad A., and Edelstein, Leonard C.
- Subjects
PLATELET count ,SINGLE nucleotide polymorphisms ,CARDIOVASCULAR diseases ,GENETIC testing ,BLOOD platelet activation ,COMPUTATIONAL biology - Abstract
CD36 is a platelet membrane glycoprotein whose engagement with oxidized low-density lipoprotein (oxLDL) results in platelet activation. The CD36 gene has been associated with platelet count, platelet volume, as well as lipid levels and CVD risk by genome-wide association studies. Platelet CD36 expression levels have been shown to be associated with both the platelet oxLDL response and an elevated risk of thrombo-embolism. Several genomic variants have been identified as associated with platelet CD36 levels, however none have been conclusively demonstrated to be causative. We screened 81 expression quantitative trait loci (eQTL) single nucleotide polymorphisms (SNPs) associated with platelet CD36 expression by a Massively Parallel Reporter Assay (MPRA) and analyzed the results with a novel Bayesian statistical method. Ten eQTLs located 13kb to 55kb upstream of the CD36 transcriptional start site of transcript ENST00000309881 and 49kb to 92kb upstream of transcript ENST00000447544, demonstrated significant transcription shifts between their minor and major allele in the MPRA assay. Of these, rs2366739 and rs1194196, separated by only 20bp, were confirmed by luciferase assay to alter transcriptional regulation. In addition, electromobility shift assays demonstrated differential DNA:protein complex formation between the two alleles of this locus. Furthermore, deletion of the genomic locus by CRISPR/Cas9 in K562 and Meg-01 cells results in upregulation of CD36 transcription. These data indicate that we have identified a variant that regulates expression of CD36, which in turn affects platelet function. To assess the clinical relevance of our findings we used the PhenoScanner tool, which aggregates large scale GWAS findings; the results reinforce the clinical relevance of our variants and the utility of the MPRA assay. The study demonstrates a generalizable paradigm for functional testing of genetic variants to inform mechanistic studies, support patient management and develop precision therapies. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
8. DAF-16/FOXO promotes taste avoidance learning independently of axonal insulin-like signaling.
- Author
-
Nagashima, Takashi, Iino, Yuichi, and Tomioka, Masahiro
- Subjects
OPERANT conditioning ,ANIMAL behavior ,TASTE ,CYTOLOGY ,CAENORHABDITIS elegans ,FORKHEAD transcription factors - Abstract
The avoidance of starvation is critical for the survival of most organisms, thus animals change behavior based on past nutritional conditions. Insulin signaling is important for nutritional state-dependent behavioral plasticity, yet the underlying regulatory mechanism at the cellular level remains unclear. Previous studies showed that insulin-like signaling is required for taste avoidance learning, in which the nematode Caenorhabditis elegans avoids salt concentrations encountered under starvation conditions. DAF-2c, a splice isoform of the DAF-2 insulin receptor, functions in the axon of the ASER sensory neuron, which senses changes in salt concentrations. In addition, mutants of a major downstream factor of DAF-2, the forkhead transcription factor O (FOXO) homolog DAF-16, show defects in taste avoidance learning. Interestingly, the defect of the daf-2 mutant is not suppressed by daf-16 mutations in the learning, unlike those in other phenomena, such as longevity and development. Here we show that multiple DAF-16 isoforms function in ASER. By epistasis analysis using a DAF-2c isoform-specific mutant and an activated form of DAF-16, we found that DAF-16 acts in the nucleus in parallel with the DAF-2c-dependent pathway in the axon, indicating that insulin-like signaling acts both in the cell body and axon of a single neuron, ASER. Starvation conditioning induces nuclear translocation of DAF-16 in ASER and degradation of DAF-16 before starvation conditioning causes defects in taste avoidance learning. Forced nuclear localization of DAF-16 in ASER biased chemotaxis towards lower salt concentrtions and this effect required the Gq/PKC pathway and neuropeptide processing enzymes. These data imply that DAF-16/FOXO transmits starvation signals and modulates neuropeptide transmission in the learning. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
9. Multilevel regulation of the glass locus during Drosophila eye development.
- Author
-
Fritsch, Cornelia, Bernardo-Garcia, F. Javier, Humberg, Tim-Henning, Mishra, Abhishek Kumar, Miellet, Sara, Almeida, Silvia, Frochaux, Michael V., Deplancke, Bart, Huber, Armin, and Sprecher, Simon G.
- Abstract
Development of eye tissue is initiated by a conserved set of transcription factors termed retinal determination network (RDN). In the fruit fly Drosophila melanogaster, the zinc-finger transcription factor Glass acts directly downstream of the RDN to control identity of photoreceptor as well as non-photoreceptor cells. Tight control of spatial and temporal gene expression is a critical feature during development, cell-fate determination as well as maintenance of differentiated tissues. The molecular mechanisms that control expression of glass, however, remain largely unknown. We here identify complex regulatory mechanisms controlling expression of the glass locus. All information to recapitulate glass expression are contained in a compact 5.2 kb cis-acting genomic element by combining different cell-type specific and general enhancers with repressor elements. Moreover, the immature RNA of the locus contains an alternative small open reading frame (smORF) upstream of the actual glass translation start, resulting in a small peptide instead of the three possible Glass protein isoforms. CRISPR/Cas9-based mutagenesis shows that the smORF is not required for the formation of functioning photoreceptors, but is able to attenuate effects of glass misexpression. Furthermore, editing the genome to generate glass loci eliminating either one or two isoforms shows that only one of the three proteins is critical for formation of functioning photoreceptors, while removing the two other isoforms did not cause defects in developmental or photoreceptor function. Our results show that eye development and function is largely unaffected by targeted manipulations of critical features of the glass transcript, suggesting a strong selection pressure to allow the formation of a functioning eye. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
10. Reproduction disrupts stem cell homeostasis in testes of aged male Drosophila via an induced microenvironment.
- Author
-
Chang, Yi Chieh, Tu, Hsin, Chen, Jing-Yi, Chang, Ching-Chin, Yang, Shu Yuan, and Pi, Haiwei
- Subjects
SPERMATOGENESIS ,STEM cells ,REPRODUCTION ,TESTIS ,DROSOPHILA ,DEVELOPMENTAL biology - Abstract
Stem cells rely on instructive cues from their environment. Alterations in microenvironments might contribute to tissue dysfunction and disease pathogenesis. Germline stem cells (GSCs) and cyst stem cells (CySC) in Drosophila testes are normally maintained in the apical area by the testicular hub. In this study, we found that reproduction leads to accumulation of early differentiating daughters of CySCs and GSCs in the testes of aged male flies, due to hyperactivation of Jun-N-terminal kinase (JNK) signaling to maintain self-renewal gene expression in the differentiating cyst cells. JNK activity is normally required to maintain CySCs in the apical niche. A muscle sheath surrounds the Drosophila testis to maintain its long coiled structure. Importantly, reproduction triggers accumulation of the tumor necrosis factor (TNF) Eiger in the testis muscle to activate JNK signaling via the TNF receptor Grindelwald in the cyst cells. Reducing Eiger activity in the testis muscle sheath suppressed reproduction-induced differentiation defects, but had little effect on testis homeostasis of unmated males. Our results reveal that reproduction in males provokes a dramatic shift in the testicular microenvironment, which impairs tissue homeostasis and spermatogenesis in the testes. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
11. XBP1 signalling is essential for alleviating mutant protein aggregation in ER-stress related skeletal disease.
- Author
-
Pirog, Katarzyna A., Dennis, Ella P., Hartley, Claire L., Jackson, Robert M., Soul, Jamie, Schwartz, Jean-Marc, Bateman, John F., Boot-Handford, Raymond P., and Briggs, Michael D.
- Subjects
MUTANT proteins ,ENDOPLASMIC reticulum ,MULTIPLE epiphyseal dysplasia ,HEAT shock proteins ,GROWTH plate ,CARTILAGE cells - Abstract
The unfolded protein response (UPR) is a conserved cellular response to the accumulation of proteinaceous material in endoplasmic reticulum (ER), active both in health and disease to alleviate cellular stress and improve protein folding. Multiple epiphyseal dysplasia (EDM5) is a genetic skeletal condition and a classic example of an intracellular protein aggregation disease, whereby mutant matrilin-3 forms large insoluble aggregates in the ER lumen, resulting in a specific ‘disease signature’ of increased expression of chaperones and foldases, and alternative splicing of the UPR effector XBP1. Matrilin-3 is expressed exclusively by chondrocytes thereby making EDM5 a perfect model system to study the role of protein aggregation in disease. In order to dissect the role of XBP1 signalling in aggregation-related conditions we crossed a p.V194D Matn3 knock-in mouse model of EDM5 with a mouse line carrying a cartilage specific deletion of XBP1 and analysed the resulting phenotype. Interestingly, the growth of mice carrying the Matn3 p.V194D mutation compounded with the cartilage specific deletion of XBP1 was severely retarded. Further phenotyping revealed increased intracellular retention of amyloid-like aggregates of mutant matrilin-3 coupled with dramatically decreased cell proliferation and increased apoptosis, suggesting a role of XBP1 signalling in protein accumulation and/or degradation. Transcriptomic analysis of chondrocytes extracted from wild type, EDM5, Xbp1-null and compound mutant lines revealed that the alternative splicing of Xbp1 is crucial in modulating levels of protein aggregation. Moreover, through detailed transcriptomic comparison with a model of metaphyseal chondrodysplasia type Schmid (MCDS), an UPR-related skeletal condition in which XBP1 was removed without overt consequences, we show for the first time that the differentiation-state of cells within the cartilage growth plate influences the UPR resulting from retention of a misfolded mutant protein and postulate that modulation of XBP1 signalling pathway presents a therapeutic target for aggregation related conditions in cells undergoing proliferation. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
12. Loss of ASAP1 in mice impairs adipogenic and osteogenic differentiation of mesenchymal progenitor cells through dysregulation of FAK/Src and AKT signaling.
- Author
-
Schreiber, Caroline, Saraswati, Supriya, Harkins, Shannon, Gruber, Annette, Cremers, Natascha, Thiele, Wilko, Rothley, Melanie, Plaumann, Diana, Korn, Claudia, Armant, Olivier, Augustin, Hellmut G., and Sleeman, Jonathan P.
- Subjects
PROGENITOR cells ,CELL migration ,CONNECTIVE tissue cells ,DEVELOPMENTAL biology ,ADAPTOR proteins ,ADIPOGENESIS - Abstract
ASAP1 is a multi-domain adaptor protein that regulates cytoskeletal dynamics, receptor recycling and intracellular vesicle trafficking. Its expression is associated with poor prognosis for a variety of cancers, and promotes cell migration, invasion and metastasis. Little is known about its physiological role. In this study, we used mice with a gene-trap inactivated ASAP1 locus to study the functional role of ASAP1 in vivo, and found defects in tissues derived from mesenchymal progenitor cells. Loss of ASAP1 led to growth retardation and delayed ossification typified by enlarged hypertrophic zones in growth plates and disorganized chondro-osseous junctions. Furthermore, loss of ASAP1 led to delayed adipocyte development and reduced fat depot formation. Consistently, deletion of ASAP1 resulted in accelerated chondrogenic differentiation of mesenchymal cells in vitro, but suppressed osteo- and adipogenic differentiation. Mechanistically, we found that FAK/Src and PI3K/AKT signaling is compromised in Asap1
GT /GT MEFs, leading to impaired adipogenic differentiation. Dysregulated FAK/Src and PI3K/AKT signaling is also associated with attenuated osteogenic differentiation. Together these observations suggest that ASAP1 plays a decisive role during the differentiation of mesenchymal progenitor cells. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
13. Actin assembly and non-muscle myosin activity drive dendrite retraction in an UNC-6/Netrin dependent self-avoidance response.
- Author
-
Sundararajan, Lakshmi, Smith, Cody J., Watson, Joseph D., Millis, Bryan A., Tyska, Matthew J., and IIIMiller, David M.
- Subjects
MYOSIN ,CONTRACTILE proteins ,DENDRITES ,ACTIN ,MOLECULAR motor proteins ,CYTOSKELETON ,CYTOSKELETAL proteins - Abstract
Dendrite growth is constrained by a self-avoidance response that induces retraction but the downstream pathways that balance these opposing mechanisms are unknown. We have proposed that the diffusible cue UNC-6(Netrin) is captured by UNC-40(DCC) for a short-range interaction with UNC-5 to trigger self-avoidance in the C. elegans PVD neuron. Here we report that the actin-polymerizing proteins UNC-34(Ena/VASP), WSP-1(WASP), UNC-73(Trio), MIG-10(Lamellipodin) and the Arp2/3 complex effect dendrite retraction in the self-avoidance response mediated by UNC-6(Netrin). The paradoxical idea that actin polymerization results in shorter rather than longer dendrites is explained by our finding that NMY-1 (non-muscle myosin II) is necessary for retraction and could therefore mediate this effect in a contractile mechanism. Our results also show that dendrite length is determined by the antagonistic effects on the actin cytoskeleton of separate sets of effectors for retraction mediated by UNC-6(Netrin) versus outgrowth promoted by the DMA-1 receptor. Thus, our findings suggest that the dendrite length depends on an intrinsic mechanism that balances distinct modes of actin assembly for growth versus retraction. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
14. Diffusion and function of Wnt ligands.
- Author
-
Stewart, Richard A., Ramakrishnan, Aravinda-Bharathi, and Cadigan, Ken M.
- Subjects
GLYCOPROTEINS ,DROSOPHILA ,GENES ,GENOMES ,HEREDITY - Abstract
The article reports that Wnts are secreted, lipidated glycoproteins that are essential for cell–cell communication in development and tissue homeostasis throughout metazoans. The W in Wnt comes from the wingless (wg) gene, which is required for proper formation of most tissues and appendages in Drosophila.
- Published
- 2019
- Full Text
- View/download PDF
15. Sister centromere fusion during meiosis I depends on maintaining cohesins and destabilizing microtubule attachments.
- Author
-
Wang, Lin-Ing, Das, Arunika, and McKim, Kim S.
- Subjects
CENTROMERE ,KINETOCHORE ,MEIOSIS ,MICROTUBULES ,SEPARASE - Abstract
Sister centromere fusion is a process unique to meiosis that promotes co-orientation of the sister kinetochores, ensuring they attach to microtubules from the same pole during metaphase I. We have found that the kinetochore protein SPC105R/KNL1 and Protein Phosphatase 1 (PP1-87B) regulate sister centromere fusion in Drosophila oocytes. The analysis of these two proteins, however, has shown that two independent mechanisms maintain sister centromere fusion. Maintenance of sister centromere fusion by SPC105R depends on Separase, suggesting cohesin proteins must be maintained at the core centromeres. In contrast, maintenance of sister centromere fusion by PP1-87B does not depend on either Separase or Wapl. Instead, PP1-87B maintains sister centromeres fusion by regulating microtubule dynamics. We demonstrate that this regulation is through antagonizing Polo kinase and BubR1, two proteins known to promote stability of kinetochore-microtubule (KT-MT) attachments, suggesting that PP1-87B maintains sister centromere fusion by inhibiting stable KT-MT attachments. Surprisingly, C(3)G, the transverse element of the synaptonemal complex (SC), is also required for centromere separation in Pp1-87B RNAi oocytes. This is evidence for a functional role of centromeric SC in the meiotic divisions, that might involve regulating microtubule dynamics. Together, we propose two mechanisms maintain co-orientation in Drosophila oocytes: one involves SPC105R to protect cohesins at sister centromeres and another involves PP1-87B to regulate spindle forces at end-on attachments. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
16. MNM and SNM maintain but do not establish achiasmate homolog conjunction during Drosophila male meiosis.
- Author
-
Sun, Michael Shoujie, Weber, Joe, Blattner, Ariane C., Chaurasia, Soumya, and Lehner, Christian F.
- Subjects
DROSOPHILA ,MEIOSIS ,HOMOLOGOUS chromosomes ,GERM cells ,SPERMATOZOA - Abstract
The first meiotic division reduces genome ploidy. This requires pairing of homologous chromosomes into bivalents that can be bi-oriented within the spindle during prometaphase I. Thereafter, pairing is abolished during late metaphase I, and univalents are segregated apart onto opposite spindle poles during anaphase I. In contrast to canonical meiosis, homologous chromosome pairing does not include the formation of a synaptonemal complex and of cross-overs in spermatocytes of Drosophila melanogaster. The alternative pairing mode in these cells depends on mnm and snm. These genes are required exclusively in spermatocytes specifically for successful conjunction of chromosomes into bivalents. Available evidence suggests that MNM and SNM might be part of a physical linkage that directly conjoins chromosomes. Here this notion was analyzed further. Temporal variation in delivery of mnm and snm function was realized by combining various transgenes with null mutant backgrounds. The observed phenotypic consequences provide strong evidence that MNM and SNM contribute directly to chromosome linkage. Premature elimination of these proteins results in precocious bivalent splitting. Delayed provision results in partial conjunction defects that are more pronounced in autosomal bivalents compared to the sex chromosome bivalent. Overall, our findings suggest that MNM and SNM cannot re-establish pairing of chromosomes into bivalents if provided after a chromosome-specific time point of no return. When delivered before this time point, they fortify preformed linkages in order to preclude premature bivalent splitting by the disruptive forces that drive chromosome territory formation during spermatocyte maturation and chromosome condensation during entry into meiosis I. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
17. Biallelic HEPHL1 variants impair ferroxidase activity and cause an abnormal hair phenotype.
- Author
-
Sharma, Prashant, Reichert, Marie, Lu, Yan, Markello, Thomas C., Adams, David R., Steinbach, Peter J., Fuqua, Brie K., Parisi, Xenia, Kaler, Stephen G., Vulpe, Christopher D., Anderson, Gregory J., Gahl, William A., and Malicdan, May Christine V.
- Subjects
OXIDATION-reduction reaction ,CERULOPLASMIN ,MESSENGER RNA ,METHIONINE ,HAIR growth - Abstract
Maintenance of the correct redox status of iron is functionally important for critical biological processes. Multicopper ferroxidases play an important role in oxidizing ferrous iron, released from the cells, into ferric iron, which is subsequently distributed by transferrin. Two well-characterized ferroxidases, ceruloplasmin (CP) and hephaestin (HEPH) facilitate this reaction in different tissues. Recently, a novel ferroxidase, Hephaestin like 1 (HEPHL1), also known as zyklopen, was identified. Here we report a child with compound heterozygous mutations in HEPHL1 (NM_001098672) who presented with abnormal hair (pili torti and trichorrhexis nodosa) and cognitive dysfunction. The maternal missense mutation affected mRNA splicing, leading to skipping of exon 5 and causing an in-frame deletion of 85 amino acids (c.809_1063del; p.Leu271_ala355del). The paternal mutation (c.3176T>C; p.Met1059Thr) changed a highly conserved methionine that is part of a typical type I copper binding site in HEPHL1. We demonstrated that HEPHL1 has ferroxidase activity and that the patient’s two mutations exhibited loss of this ferroxidase activity. Consistent with these findings, the patient’s fibroblasts accumulated intracellular iron and exhibited reduced activity of the copper-dependent enzyme, lysyl oxidase. These results suggest that the patient’s biallelic variants are loss-of-function mutations. Hence, we generated a Hephl1 knockout mouse model that was viable and had curly whiskers, consistent with the hair phenotype in our patient. These results enhance our understanding of the function of HEPHL1 and implicate altered ferroxidase activity in hair growth and hair disorders. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
18. CBX2 is required to stabilize the testis pathway by repressing Wnt signaling.
- Author
-
Garcia-Moreno, S. Alexandra, Lin, Yi-Tzu, Futtner, Christopher R., Salamone, Isabella M., Capel, Blanche, and Maatouk, Danielle M.
- Subjects
GONADS ,TESTIS ,POLYCOMB group proteins ,SERTOLI cells ,OVARIES - Abstract
XX and XY fetal gonads are initially bipotential, poised between the ovary and testis fate. Multiple lines of evidence suggest that commitment to testis fate requires the repression of genes associated with ovary fate. It was previously shown that loss of CBX2, the subunit of the Polycomb Repressive Complex 1 (PRC1) that binds H3K27me3 and mediates silencing, leads to ovary development in XY mice and humans. While it had been proposed that CBX2 is an activator of the testis-determining gene Sry, we investigated the alternative possibility that CBX2 has a direct role as a repressor of the antagonistic ovary-promoting pathway. To investigate this possibility, we developed a quantitative genome-wide profile of the repressive histone mark H3K27me3 and its active counterpart H3K4me3 in isolated XY and XX gonadal supporting cells before and after sex determination. We show that testis and ovary sex-determining (SD) genes are bivalent before sex determination, providing insight into how the bipotential state of the gonad is established at the epigenetic level. After sex determination, many SD genes of the alternate pathway remain bivalent, possibly contributing to the ability of these cells to transdifferentiate even in adults. The finding that many genes in the Wnt signaling pathway were targeted for H3K27me3-mediated repression in Sertoli cells led us to test whether deletion of Wnt4 could rescue testis development in Cbx2 mutants. We show that Sry expression and testis development were rescued in XY Cbx2
-/- ;Wnt4-/- mice. Furthermore, we show that CBX2 directly binds the downstream Wnt signaler Lef1, an ovary-promoting gene that remains bivalent in Sertoli cells. Our results suggest that stabilization of the testis fate requires CBX2-mediated repression of bivalent ovary-determining genes, which would otherwise block testis development. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
19. MicroRNA26 attenuates vascular smooth muscle maturation via endothelial BMP signalling.
- Author
-
Watterston, Charlene, Zeng, Lei, Onabadejo, Abidemi, and Childs, Sarah J.
- Subjects
MICRORNA ,SMOOTH muscle ,ENDOTHELIAL cells ,PHENOTYPES ,MESSENGER RNA ,HEMORRHAGE - Abstract
As small regulatory transcripts, microRNAs (miRs) act as genetic ‘fine tuners’ of posttranscriptional events, and as genetic switches to promote phenotypic switching. The miR miR26a targets the BMP signalling effector, smad1. We show that loss of miR26a leads to hemorrhage (a loss of vascular stability) in vivo, suggesting altered vascular differentiation. Reduction in miR26a levels increases smad1 mRNA and phospho-Smad1 (pSmad1) levels. We show that increasing BMP signalling by overexpression of smad1 also leads to hemorrhage. Normalization of Smad1 levels through double knockdown of miR26a and smad1 rescues hemorrhage, suggesting a direct relationship between miR26a, smad1 and vascular stability. Using an in vivo BMP genetic reporter and pSmad1 staining, we show that the effect of miR26a on smooth muscle differentiation is non-autonomous; BMP signalling is active in embryonic endothelial cells, but not in smooth muscle cells. Nonetheless, increased BMP signalling due to loss of miR26a results in an increase in acta2-expressing smooth muscle cell numbers and promotes a differentiated smooth muscle morphology. Similarly, forced expression of smad1 in endothelial cells leads to an increase in smooth muscle cell number and coverage. Furthermore, smooth muscle phenotypes caused by inhibition of the BMP pathway are rescued by loss of miR26a. Taken together, our data suggest that miR26a modulates BMP signalling in endothelial cells and indirectly promotes a differentiated smooth muscle phenotype. Our data highlights how crosstalk from BMP-responsive endothelium to smooth muscle is important for smooth muscle differentiation. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
20. Mouse genome-wide association and systems genetics identifies Lhfp as a regulator of bone mass.
- Author
-
Mesner, Larry D., Calabrese, Gina M., Al-Barghouthi, Basel, Gatti, Daniel M., Sundberg, John P., Churchill, Gary A., Godfrey, Dana. A., Ackert-Bicknell, Cheryl L., and Farber, Charles R.
- Subjects
BONE density ,GENOMES ,CRISPRS ,MESENCHYMAL stem cells ,OSTEOBLASTS - Abstract
Bone mineral density (BMD) is a strong predictor of osteoporotic fracture. It is also one of the most heritable disease-associated quantitative traits. As a result, there has been considerable effort focused on dissecting its genetic basis. Here, we performed a genome-wide association study (GWAS) in a panel of inbred strains to identify associations influencing BMD. This analysis identified a significant (P = 3.1 x 10
−12 ) BMD locus on Chromosome 3@52.5 Mbp that replicated in two separate inbred strain panels and overlapped a BMD quantitative trait locus (QTL) previously identified in a F2 intercross. The association mapped to a 300 Kbp region containing four genes; Gm2447, Gm20750, Cog6, and Lhfp. Further analysis found that Lipoma HMGIC Fusion Partner (Lhfp) was highly expressed in bone and osteoblasts. Furthermore, its expression was regulated by a local expression QTL (eQTL), which overlapped the BMD association. A co-expression network analysis revealed that Lhfp was strongly connected to genes involved in osteoblast differentiation. To directly evaluate its role in bone, Lhfp deficient mice (Lhfp-/- ) were created using CRISPR/Cas9. Consistent with genetic and network predictions, bone marrow stromal cells (BMSCs) from Lhfp-/- mice displayed increased osteogenic differentiation. Lhfp-/- mice also had elevated BMD due to increased cortical bone mass. Lastly, we identified SNPs in human LHFP that were associated (P = 1.2 x 10−5 ) with heel BMD. In conclusion, we used GWAS and systems genetics to identify Lhfp as a regulator of osteoblast activity and bone mass. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
21. The molecular and cellular basis of olfactory response to tsetse fly attractants.
- Author
-
Chahda, J. Sebastian, Soni, Neeraj, Sun, Jennifer S., Ebrahim, Shimaa A. M., Weiss, Brian L., and Carlson, John R.
- Subjects
TSETSE-flies ,INSECT olfactory receptors ,INSECT sensory receptors ,DROSOPHILA ,AFRICAN trypanosomiasis ,DISEASE vectors ,PROPANOLS - Abstract
Dipteran or “true” flies occupy nearly every terrestrial habitat, and have evolved to feed upon a wide variety of sources including fruit, pollen, decomposing animal matter, and even vertebrate blood. Here we analyze the molecular, genetic and cellular basis of odor response in the tsetse fly Glossina morsitans, which feeds on the blood of humans and their livestock, and is a vector of deadly trypanosomes. The G. morsitans antenna contains specialized subtypes of sensilla, some of which line a sensory pit not found in the fruit fly Drosophila. We characterize distinct patterns of G. morsitans Odor receptor (GmmOr) gene expression in the antenna. We devise a new version of the “empty neuron” heterologous expression system, and use it to functionally express several GmmOrs in a mutant olfactory receptor neuron (ORN) of Drosophila. GmmOr35 responds to 1-hexen-3-ol, an odorant found in human emanations, and also alpha-pinene, a compound produced by malarial parasites. Another receptor, GmmOr9, which is expressed in the sensory pit, responds to acetone, 2-butanone and 2-propanol. We confirm by electrophysiological recording that neurons of the sensory pit respond to these odorants. Acetone and 2-butanone are strong attractants long used in the field to trap tsetse. We find that 2-propanol is also an attractant for both G. morsitans and the related species G. fuscipes, a major vector of African sleeping sickness. The results identify 2-propanol as a candidate for an environmentally friendly and practical tsetse attractant. Taken together, this work characterizes the olfactory system of a highly distinct kind of fly, and it provides an approach to identifying new agents for controlling the fly and the devastating diseases that it carries. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
22. The CPEB translational regulator, Orb, functions together with Par proteins to polarize the Drosophila oocyte.
- Author
-
Barr, Justinn, Charania, Sofia, Gilmutdinov, Rudolf, Yakovlev, Konstantin, Shidlovskii, Yulii, and Schedl, Paul
- Subjects
TRANSPOSONS ,MICRORNA ,GENOMES ,PROTEINS ,DROSOPHILA - Abstract
orb is a founding member of the CPEB family of translational regulators and is required at multiple steps during Drosophila oogenesis. Previous studies showed that orb is required during mid-oogenesis for the translation of the posterior/germline determinant oskar mRNA and the dorsal-ventral determinant gurken mRNA. Here, we report that orb also functions upstream of these axes determinants in the polarization of the microtubule network (MT). Prior to oskar and gurken translational activation, the oocyte MT network is repolarized. The MT organizing center at the oocyte posterior is disassembled, and a new MT network is established at the oocyte anterior. Repolarization depends upon cross-regulatory interactions between anterior (apical) and posterior (basal) Par proteins. We show that repolarization of the oocyte also requires orb and that orb is needed for the proper functioning of the Par proteins. orb interacts genetically with aPKC and cdc42 and in egg chambers compromised for orb activity, Par-1 and aPKC protein and aPKC mRNA are mislocalized. Moreover, like cdc42
- , the defects in Par protein localization appear to be connected to abnormalities in the cortical actin cytoskeleton. These abnormalities also disrupt the localization of the spectraplakin Shot and the microtubule minus-end binding protein Patronin. These two proteins play a critical role in the repolarization of the MT network. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
23. Intestinal NF-κB and STAT signalling is important for uptake and clearance in a Drosophila-Herpetomonas interaction model.
- Author
-
Wang, Lihui, Sloan, Megan A., and Ligoxygakis, Petros
- Subjects
DROSOPHILA melanogaster ,GENE expression ,CELL proliferation ,PARASITIC diseases ,ENTEROCYTES ,STEM cells - Abstract
Dipteran insects transmit serious diseases to humans, often in the form of trypanosomatid parasites. To accelerate research in more difficult contexts of dipteran-parasite relationships, we studied the interaction of the model dipteran Drosophila melanogaster and its natural trypanosomatid Herpetomonas muscarum. Parasite infection reduced fecundity but not lifespan in NF-κB/Relish-deficient flies. Gene expression analysis implicated the two NF-κB pathways Toll and Imd as well as STAT signalling. Tissue specific knock-down of key components of these pathways in enterocytes (ECs) and intestinal stem cells (ISCs) influenced initial numbers, infection dynamics and time of clearance. Herpetomonas triggered STAT activation and proliferation of ISCs. Loss of Relish suppressed ISCs, resulting in increased parasite numbers and delayed clearance. Conversely, overexpression of Relish increased ISCs and reduced uptake. Finally, loss of Toll signalling decreased EC numbers and enabled parasite persistence. This network of signalling may represent a general mechanism with which dipteran respond to trypanosomatids. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
24. Assessing effects of germline exposure to environmental toxicants by high-throughput screening in C. elegans.
- Author
-
Shin, Nara, Cuenca, Luciann, Karthikraj, Rajendiran, Kannan, Kurunthachalam, and Colaiácovo, Monica P.
- Subjects
GERM cells ,CAENORHABDITIS elegans ,ENVIRONMENTAL toxicology ,REPRODUCTIVE health ,BISPHENOL A ,HAZARDOUS substances - Abstract
Chemicals that are highly prevalent in our environment, such as phthalates and pesticides, have been linked to problems associated with reproductive health. However, rapid assessment of their impact on reproductive health and understanding how they cause such deleterious effects, remain challenging due to their fast-growing numbers and the limitations of various current toxicity assessment model systems. Here, we performed a high-throughput screen in C. elegans to identify chemicals inducing aneuploidy as a result of impaired germline function. We screened 46 chemicals that are widely present in our environment, but for which effects in the germline remain poorly understood. These included pesticides, phthalates, and chemicals used in hydraulic fracturing and crude oil processing. Of the 46 chemicals tested, 41% exhibited levels of aneuploidy higher than those detected for bisphenol A (BPA), an endocrine disruptor shown to affect meiosis, at concentrations correlating well with mammalian reproductive endpoints. We further examined three candidates eliciting aneuploidy: dibutyl phthalate (DBP), a likely endocrine disruptor and frequently used plasticizer, and the pesticides 2-(thiocyanomethylthio) benzothiazole (TCMTB) and permethrin. Exposure to these chemicals resulted in increased embryonic lethality, elevated DNA double-strand break (DSB) formation, activation of p53/CEP-1-dependent germ cell apoptosis, chromosomal abnormalities in oocytes at diakinesis, impaired chromosome segregation during early embryogenesis, and germline-specific alterations in gene expression. This study indicates that this high-throughput screening system is highly reliable for the identification of environmental chemicals inducing aneuploidy, and provides new insights into the impact of exposure to three widely used chemicals on meiosis and germline function. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
25. Dual role of DMXL2 in olfactory information transmission and the first wave of spermatogenesis.
- Author
-
Gobé, Clara, Elzaiat, Maëva, Meunier, Nicolas, André, Marjolaine, Sellem, Eli, Congar, Patrice, Jouneau, Luc, Allais-Bonnet, Aurélie, Naciri, Ikrame, Passet, Bruno, Pailhoux, Eric, and Pannetier, Maëlle
- Subjects
SPERMATOGENESIS ,GONADS ,HYPOGLYCEMIA ,GERM cells ,FERTILITY - Abstract
Gonad differentiation is a crucial step conditioning the future fertility of individuals and most of the master genes involved in this process have been investigated in detail. However, transcriptomic analyses of developing gonads from different animal models have revealed that hundreds of genes present sexually dimorphic expression patterns. DMXL2 was one of these genes and its function in mammalian gonads was unknown. We therefore investigated the phenotypes of total and gonad-specific Dmxl2 knockout mouse lines. The total loss-of-function of Dmxl2 was lethal in neonates, with death occurring within 12 hours of birth. Dmxl2-knockout neonates were weak and did not feed. They also presented defects of olfactory information transmission and severe hypoglycemia, suggesting that their premature death might be due to global neuronal and/or metabolic deficiencies. Dmxl2 expression in the gonads increased after birth, during follicle formation in females and spermatogenesis in males. DMXL2 was detected in both the supporting and germinal cells of both sexes. As Dmxl2 loss-of-function was lethal, only limited investigations of the gonads of Dmxl2 KO pups were possible. They revealed no major defects at birth. The gonadal function of Dmxl2 was then assessed by conditional deletions of the gene in gonadal supporting cells, germinal cells, or both. Conditional Dmxl2 ablation in the gonads did not impair fertility in males or females. By contrast, male mice with Dmxl2 deletions, either throughout the testes or exclusively in germ cells, presented a subtle testicular phenotype during the first wave of spermatogenesis that was clearly detectable at puberty. Indeed, Dmxl2 loss-of-function throughout the testes or in germ cells only, led to sperm counts more than 60% lower than normal and defective seminiferous tubule architecture. Transcriptomic and immunohistochemichal analyses on these abnormal testes revealed a deregulation of Sertoli cell phagocytic activity related to germ cell apoptosis augmentation. In conclusion, we show that Dmxl2 exerts its principal function in the testes at the onset of puberty, although its absence does not compromise male fertility in mice. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
26. Mammalian Hbs1L deficiency causes congenital anomalies and developmental delay associated with Pelota depletion and 80S monosome accumulation.
- Author
-
O’Connell, Amy E., Gerashchenko, Maxim V., O’Donohue, Marie-Francoise, Rosen, Samantha M., Huntzinger, Eric, Gleeson, Diane, Galli, Antonella, Ryder, Edward, Cao, Siqi, Murphy, Quinn, Kazerounian, Shideh, Morton, Sarah U., Schmitz-Abe, Klaus, Gladyshev, Vadim N., Gleizes, Pierre-Emmanuel, Séraphin, Bertrand, and Agrawal, Pankaj B.
- Subjects
MUSCLE dysmorphia ,BIOCHEMISTRY ,PROKARYOTIC genomes ,POLYMERASE chain reaction ,MESSENGER RNA - Abstract
Hbs1 has been established as a central component of the cell’s translational quality control pathways in both yeast and prokaryotic models; however, the functional characteristics of its human ortholog (Hbs1L) have not been well-defined. We recently reported a novel human phenotype resulting from a mutation in the critical coding region of the HBS1L gene characterized by facial dysmorphism, severe growth restriction, axial hypotonia, global developmental delay and retinal pigmentary deposits. Here we further characterize downstream effects of the human HBS1L mutation. HBS1L has three transcripts in humans, and RT-PCR demonstrated reduced mRNA levels corresponding with transcripts V1 and V2 whereas V3 expression was unchanged. Western blot analyses revealed Hbs1L protein was absent in the patient cells. Additionally, polysome profiling revealed an abnormal aggregation of 80S monosomes in patient cells under baseline conditions. RNA and ribosomal sequencing demonstrated an increased translation efficiency of ribosomal RNA in Hbs1L-deficient fibroblasts, suggesting that there may be a compensatory increase in ribosome translation to accommodate the increased 80S monosome levels. This enhanced translation was accompanied by upregulation of mTOR and 4-EBP protein expression, suggesting an mTOR-dependent phenomenon. Furthermore, lack of Hbs1L caused depletion of Pelota protein in both patient cells and mouse tissues, while PELO mRNA levels were unaffected. Inhibition of proteasomal function partially restored Pelota expression in human Hbs1L-deficient cells. We also describe a mouse model harboring a knockdown mutation in the murine Hbs1l gene that shared several of the phenotypic elements observed in the Hbs1L-deficient human including facial dysmorphism, growth restriction and retinal deposits. The Hbs1lKO mice similarly demonstrate diminished Pelota levels that were rescued by proteasome inhibition. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
27. A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest.
- Author
-
Petratou, Kleio, Subkhankulova, Tatiana, Lister, James A., Rocco, Andrea, Schwetlick, Hartmut, and Kelsh, Robert N.
- Subjects
SYSTEMS biology ,GENES ,NEURAL crest ,CHROMATOPHORES ,PHENOTYPES - Abstract
Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10-dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a, a key differentiation gene. We also assess a candidate repressor of mitfa, a melanocyte-specific target of sox10. Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
28. A survey of inter-individual variation in DNA methylation identifies environmentally responsive co-regulated networks of epigenetic variation in the human genome.
- Author
-
Garg, Paras, Joshi, Ricky S., Watson, Corey, and Sharp, Andrew J.
- Subjects
DNA methylation ,HUMAN genome ,HUMAN genetic variation ,EPIGENETICS ,HERITABILITY ,TRANSCRIPTION factors ,BINDING sites ,T cells - Abstract
While population studies have resulted in detailed maps of genetic variation in humans, to date there are few robust maps of epigenetic variation. We identified sites containing clusters of CpGs with high inter-individual epigenetic variation, termed Variably Methylated Regions (VMRs) in five purified cell types. We observed that VMRs occur preferentially at enhancers and 3’ UTRs. While the majority of VMRs have high heritability, a subset of VMRs within the genome show highly correlated variation in trans, forming co-regulated networks that have low heritability, differ between cell types and are enriched for specific transcription factor binding sites and biological pathways of functional relevance to each tissue. For example, in T cells we defined a network of 95 co-regulated VMRs enriched for genes with roles in T-cell activation; in fibroblasts a network of 34 co-regulated VMRs comprising all four HOX gene clusters enriched for control of tissue growth; and in neurons a network of 18 VMRs enriched for roles in synaptic signaling. By culturing genetically-identical fibroblasts under varying environmental conditions, we experimentally demonstrated that some VMR networks are responsive to the environment, with methylation levels at these loci changing in a coordinated fashion in trans dependent on cellular growth. Intriguingly these environmentally-responsive VMRs showed a strong enrichment for imprinted loci (p<10
−80 ), suggesting that these are particularly sensitive to environmental conditions. Our study provides a detailed map of common epigenetic variation in the human genome, showing that both genetic and environmental causes underlie this variation. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
29. Activating PAX gene family paralogs to complement PAX5 leukemia driver mutations.
- Author
-
Hart, Matthew R., Anderson, Donovan J., Porter, Christopher C., Neff, Tobias, Levin, Michael, and Horwitz, Marshall S.
- Subjects
LYMPHOBLASTIC leukemia ,GENE expression ,TRANSCRIPTION factors ,GENETIC mutation ,LYMPHOCYTES ,EMBRYOLOGY - Abstract
PAX5, one of nine members of the mammalian paired box (PAX) family of transcription factors, plays an important role in B cell development. Approximately one-third of individuals with pre-B acute lymphoblastic leukemia (ALL) acquire heterozygous inactivating mutations of PAX5 in malignant cells, and heterozygous germline loss-of-function PAX5 mutations cause autosomal dominant predisposition to ALL. At least in mice, Pax5 is required for pre-B cell maturation, and leukemic remission occurs when Pax5 expression is restored in a Pax5-deficient mouse model of ALL. Together, these observations indicate that PAX5 deficiency reversibly drives leukemogenesis. PAX5 and its two most closely related paralogs, PAX2 and PAX8, which are not mutated in ALL, exhibit overlapping expression and function redundantly during embryonic development. However, PAX5 alone is expressed in lymphocytes, while PAX2 and PAX8 are predominantly specific to kidney and thyroid, respectively. We show that forced expression of PAX2 or PAX8 complements PAX5 loss-of-function mutation in ALL cells as determined by modulation of PAX5 target genes, restoration of immunophenotypic and morphological differentiation, and, ultimately, reduction of replicative potential. Activation of PAX5 paralogs, PAX2 or PAX8, ordinarily silenced in lymphocytes, may therefore represent a novel approach for treating PAX5-deficient ALL. In pursuit of this strategy, we took advantage of the fact that, in kidney, PAX2 is upregulated by extracellular hyperosmolarity. We found that hyperosmolarity, at potentially clinically achievable levels, transcriptionally activates endogenous PAX2 in ALL cells via a mechanism dependent on NFAT5, a transcription factor coordinating response to hyperosmolarity. We also found that hyperosmolarity upregulates residual wild type PAX5 expression in ALL cells and modulates gene expression, including in PAX5-mutant primary ALL cells. These findings specifically demonstrate that osmosensing pathways may represent a new therapeutic target for ALL and more broadly point toward the possibility of using gene paralogs to rescue mutations driving cancer and other diseases. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
30. Dynamic SUMO remodeling drives a series of critical events during the meiotic divisions in C. elegans.
- Author
-
Davis-Roca, Amanda C., Divekar, Nikita S., Ng, Rachel K., and Wignall, Sarah M.
- Subjects
MEIOTIC drive ,CAENORHABDITIS elegans ,MOLECULAR chaperones ,GENETIC regulation ,ANAPHASE - Abstract
Chromosome congression and segregation in C. elegans oocytes depend on a complex of conserved proteins that forms a ring around the center of each bivalent during prometaphase; these complexes are then removed from chromosomes at anaphase onset and disassemble as anaphase proceeds. Here, we uncover mechanisms underlying the dynamic regulation of these ring complexes (RCs), revealing a strategy by which protein complexes can be progressively remodeled during cellular processes. We find that the assembly, maintenance, and stability of RCs is regulated by a balance between SUMO conjugating and deconjugating activity. During prometaphase, the SUMO protease ULP-1 is targeted to the RCs but is counteracted by SUMO E2/E3 enzymes; then in early anaphase the E2/E3 enzymes are removed, enabling ULP-1 to trigger RC disassembly and completion of the meiotic divisions. Moreover, we found that SUMO regulation is essential to properly connect the RCs to the chromosomes and then also to fully release them in anaphase. Altogether, our work demonstrates that dynamic remodeling of SUMO modifications facilitates key meiotic events and highlights how competition between conjugation and deconjugation activity can modulate SUMO homeostasis, protein complex stability, and ultimately, progressive processes such as cell division. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
31. The temporal landscape of recursive splicing during Pol II transcription elongation in human cells.
- Author
-
Zhang, Xiao-Ou, Fu, Yu, Mou, Haiwei, Xue, Wen, and Weng, Zhiping
- Subjects
RNA splicing ,THIOURIDINE ,INTRONS ,RNA polymerase II ,DROSOPHILA melanogaster - Abstract
Recursive splicing (RS) is an evolutionarily conserved process of removing long introns via multiple steps of splicing. It was first discovered in Drosophila and recently proven to occur also in humans. The detailed mechanism of recursive splicing is not well understood, in particular, whether it is kinetically coupled with transcription. To investigate the dynamic process that underlies recursive splicing, we systematically characterized 342 RS sites in three human cell types using published time-series data that monitored synchronized Pol II elongation and nascent RNA production with 4-thiouridine labeling. We found that half of the RS events occurred post-transcriptionally with long delays. For at least 18–47% RS introns, we detected RS junction reads only after detecting canonical splicing junction reads, supporting the notion that these introns were removed by both recursive splicing and canonical splicing. Furthermore, the choice of which splicing mechanism was used showed cell type specificity. Our results suggest that recursive splicing supplements, rather than replaces, canonical splicing for removing long introns. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
32. Mutation in the intracellular chloride channel CLCC1 associated with autosomal recessive retinitis pigmentosa.
- Author
-
Li, Lin, Jiao, Xiaodong, D’Atri, Ilaria, Ono, Fumihito, Nelson, Ralph, Chan, Chi-Chao, Nakaya, Naoki, Ma, Zhiwei, Ma, Yan, Cai, Xiaoying, Zhang, Longhua, Lin, Siying, Hameed, Abdul, Chioza, Barry A., Hardy, Holly, Arno, Gavin, Hull, Sarah, Khan, Muhammad Imran, Fasham, James, and Harlalka, Gaurav V.
- Subjects
CHLORIDE channels ,RETINITIS pigmentosa ,OSTEICHTHYES ,PHOTORECEPTORS ,GENE expression - Abstract
We identified a homozygous missense alteration (c.75C>A, p.D25E) in CLCC1, encoding a presumptive intracellular chloride channel highly expressed in the retina, associated with autosomal recessive retinitis pigmentosa (arRP) in eight consanguineous families of Pakistani descent. The p.D25E alteration decreased CLCC1 channel function accompanied by accumulation of mutant protein in granules within the ER lumen, while siRNA knockdown of CLCC1 mRNA induced apoptosis in cultured ARPE-19 cells. TALEN KO in zebrafish was lethal 11 days post fertilization. The depressed electroretinogram (ERG) cone response and cone spectral sensitivity of 5 dpf KO zebrafish and reduced eye size, retinal thickness, and expression of rod and cone opsins could be rescued by injection of wild type CLCC1 mRNA. Clcc1
+/- KO mice showed decreased ERGs and photoreceptor number. Together these results strongly suggest that intracellular chloride transport by CLCC1 is a critical process in maintaining retinal integrity, and CLCC1 is crucial for survival and function of retinal cells. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
33. Homozygous loss-of-function mutations in MNS1 cause laterality defects and likely male infertility.
- Author
-
Ta-Shma, Asaf, Hjeij, Rim, Perles, Zeev, Dougherty, Gerard W., Abu Zahira, Ibrahim, Letteboer, Stef J. F., Antony, Dinu, Darwish, Alaa, Mans, Dorus A., Spittler, Sabrina, Edelbusch, Christine, Cindrić, Sandra, Nöthe-Menchen, Tabea, Olbrich, Heike, Stuhlmann, Friederike, Aprea, Isabella, Pennekamp, Petra, Loges, Niki T., Breuer, Oded, and Shaag, Avraham
- Subjects
GENETIC mutation ,MEIOSIS ,MALE infertility ,CILIA & ciliary motion ,IMMUNOPRECIPITATION - Abstract
The clinical spectrum of ciliopathies affecting motile cilia spans impaired mucociliary clearance in the respiratory system, laterality defects including heart malformations, infertility and hydrocephalus. Using linkage analysis and whole exome sequencing, we identified two recessive loss-of-function MNS1 mutations in five individuals from four consanguineous families: 1) a homozygous nonsense mutation p.Arg242* in four males with laterality defects and infertility and 2) a homozygous nonsense mutation p.Gln203* in one female with laterality defects and recurrent respiratory infections additionally carrying homozygous mutations in DNAH5. Consistent with the laterality defects observed in these individuals, we found Mns1 to be expressed in mouse embryonic ventral node. Immunofluorescence analysis further revealed that MNS1 localizes to the axonemes of respiratory cilia as well as sperm flagella in human. In-depth ultrastructural analyses confirmed a subtle outer dynein arm (ODA) defect in the axonemes of respiratory epithelial cells resembling findings reported in Mns1-deficient mice. Ultrastructural analyses in the female carrying combined mutations in MNS1 and DNAH5 indicated a role for MNS1 in the process of ODA docking (ODA-DC) in the distal respiratory axonemes. Furthermore, co-immunoprecipitation and yeast two hybrid analyses demonstrated that MNS1 dimerizes and interacts with the ODA docking complex component CCDC114. Overall, we demonstrate that MNS1 deficiency in humans causes laterality defects (situs inversus) and likely male infertility and that MNS1 plays a role in the ODA-DC assembly. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
34. The thirsty fly: Ion transport peptide (ITP) is a novel endocrine regulator of water homeostasis in Drosophila.
- Author
-
Gáliková, Martina, Dircksen, Heinrich, and Nässel, Dick R.
- Subjects
ION transport (Biology) ,PEPTIDES ,ENDOCRINE glands ,HOMEOSTASIS ,DROSOPHILA - Abstract
Animals need to continuously adjust their water metabolism to the internal and external conditions. Homeostasis of body fluids thus requires tight regulation of water intake and excretion, and a balance between ingestion of water and solid food. Here, we investigated how these processes are coordinated in Drosophila melanogaster. We identified the first thirst-promoting and anti-diuretic hormone of Drosophila, encoded by the gene Ion transport peptide (ITP). This endocrine regulator belongs to the CHH (crustacean hyperglycemic hormone) family of peptide hormones. Using genetic gain- and loss-of-function experiments, we show that ITP signaling acts analogous to the human vasopressin and renin-angiotensin systems; expression of ITP is elevated by dehydration of the fly, and the peptide increases thirst while repressing excretion, promoting thus conservation of water resources. ITP responds to both osmotic and desiccation stress, and dysregulation of ITP signaling compromises the fly’s ability to cope with these stressors. In addition to the regulation of thirst and excretion, ITP also suppresses food intake. Altogether, our work identifies ITP as an important endocrine regulator of thirst and excretion, which integrates water homeostasis with feeding of Drosophila. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
35. E-cadherin bridges cell polarity and spindle orientation to ensure prostate epithelial integrity and prevent carcinogenesis in vivo.
- Author
-
Wang, Xue, Dong, Baijun, Zhang, Kai, Ji, Zhongzhong, Cheng, Chaping, Zhao, Huifang, Sheng, Yaru, Li, Xiaoxia, Fan, Liancheng, Xue, Wei, Gao, Wei-Qiang, and Zhu, Helen He
- Subjects
CADHERINS ,PROTEINS ,CELL division ,CARCINOGENESIS ,GENETIC toxicology - Abstract
Cell polarity and correct mitotic spindle positioning are essential for the maintenance of a proper prostate epithelial architecture, and disruption of the two biological features occurs at early stages in prostate tumorigenesis. However, whether and how these two epithelial attributes are connected in vivo is largely unknown. We herein report that conditional genetic deletion of E-cadherin, a key component of adherens junctions, in a mouse model results in loss of prostate luminal cell polarity and randomization of spindle orientations. Critically, E-cadherin ablation causes prostatic hyperplasia which progresses to invasive adenocarcinoma. Mechanistically, E-cadherin and the spindle positioning determinant LGN interacts with the PDZ domain of cell polarity protein SCRIB and form a ternary protein complex to bridge cell polarity and cell division orientation. These findings provide a novel mechanism by which E-cadherin acts an anchor to maintain prostate epithelial integrity and to prevent carcinogenesis in vivo. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
36. Binucleate germ cells in Caenorhabditis elegans are removed by physiological apoptosis.
- Author
-
Raiders, Stephan A., Eastwood, Michael D., Bacher, Meghan, and Priess, James R.
- Subjects
GERM cells ,CAENORHABDITIS elegans ,APOPTOSIS ,OOGENESIS ,MITOCHONDRIA ,CELL death - Abstract
Cell death plays a major role during C. elegans oogenesis, where over half of the oogenic germ cells die in a process termed physiological apoptosis. How germ cells are selected for physiological apoptosis, or instead become oocytes, is not understood. Most oocytes produce viable embryos when apoptosis is blocked, suggesting that physiological apoptosis does not function to cull defective germ cells. Instead, cells targeted for apoptosis may function as nurse cells; the germline is syncytial, and all germ cells appear to contribute cytoplasm to developing oocytes. C. elegans has been a leading model for the genetics and molecular biology of apoptosis and phagocytosis, but comparatively few studies have examined the cell biology of apoptotic cells. We used live imaging to identify and examine pre-apoptotic germ cells in the adult gonad. After initiating apoptosis, germ cells selectively export their mitochondria into the shared pool of syncytial cytoplasm; this transport appears to use the microtubule motor kinesin. The apoptotic cells then shrink as they expel most of their remaining cytoplasm, and close off from the syncytium. Shortly thereafter the apoptotic cells restructure their microtubule and actin cytoskeletons, possibly to maintain cell integrity; the microtubules form a novel, cortical array of stabilized microtubules, and actin and cofilin organize into giant cofilin-actin rods. We discovered that some apoptotic germ cells are binucleate; the binucleate germ cells can develop into binucleate oocytes in apoptosis-defective strains, and appear capable of producing triploid offspring. Our results suggest that the nuclear layer of the germline syncytium becomes folded during mitosis and growth, and that binucleate cells arise as the layer unfolds or everts; all of the binucleate cells are subsequently removed by apoptosis. These results show that physiological apoptosis targets at least two distinct populations of germ cells, and that the apoptosis machinery efficiently recognizes cells with two nuclei. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
37. Modulation of miR-210 alters phasing of circadian locomotor activity and impairs projections of PDF clock neurons in Drosophila melanogaster.
- Author
-
Cusumano, Paola, Biscontin, Alberto, Sandrelli, Federica, Mazzotta, Gabriella M., Tregnago, Claudia, De Pittà, Cristiano, and Costa, Rodolfo
- Subjects
NON-coding RNA ,MICRORNA genetics ,DROSOPHILA ,GENETIC overexpression ,GENE expression ,PHYSIOLOGY - Abstract
Single microRNAs are usually associated with hundreds of putative target genes that can influence multiple phenotypic traits in Drosophila, ranging from development to behaviour. We investigated the function of Drosophila miR-210 in circadian behaviour by misexpressing it within circadian clock cells. Manipulation of miR-210 expression levels in the PDF (pigment dispersing factor) positive neurons affected the phase of locomotor activity, under both light-dark conditions and constant darkness. PER cyclical expression was not affected in clock neurons, however, when miR-210 was up-regulated, a dramatic alteration in the morphology of PDF ventral lateral neuron (LNv) arborisations was observed. The effect of miR-210 in shaping neuronal projections was confirmed in vitro, using a Drosophila neuronal cell line. A transcriptomic analysis revealed that miR-210 overexpression affects the expression of several genes belonging to pathways related to circadian processes, neuronal development, GTPases signal transduction and photoreception. Collectively, these data reveal the role of miR-210 in modulating circadian outputs in flies and guiding/remodelling PDF positive LNv arborisations and indicate that miR-210 may have pleiotropic effects on the clock, light perception and neuronal development. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
38. No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice.
- Author
-
Iyer, Vivek, Boroviak, Katharina, Thomas, Mark, Doe, Brendan, Riva, Laura, Ryder, Edward, and Adams, David J.
- Subjects
NUCLEOTIDE sequencing ,RNA synthesis ,PHENOL oxidase ,TYRP1 gene ,MOLECULAR biology - Abstract
CRISPR-Cas9 technologies have transformed genome-editing of experimental organisms and have immense therapeutic potential. Despite significant advances in our understanding of the CRISPR-Cas9 system, concerns remain over the potential for off-target effects. Recent studies have addressed these concerns using whole-genome sequencing (WGS) of gene-edited embryos or animals to search for de novo mutations (DNMs), which may represent candidate changes introduced by poor editing fidelity. Critically, these studies used strain-matched, but not pedigree-matched controls and thus were unable to reliably distinguish generational or colony-related differences from true DNMs. Here we used a trio design and whole genome sequenced 8 parents and 19 embryos, where 10 of the embryos were mutagenised with well-characterised gRNAs targeting the coat colour Tyrosinase (Tyr) locus. Detailed analyses of these whole genome data allowed us to conclude that if CRISPR mutagenesis were causing SNV or indel off-target mutations in treated embryos, then the number of these mutations is not statistically distinguishable from the background rate of DNMs occurring due to other processes. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
39. OFF-responses of interneurons optimize avoidance behaviors depending on stimulus strength via electrical synapses.
- Author
-
Hori, Sayaka, Oda, Shigekazu, Suehiro, Yuji, Iino, Yuichi, and Mitani, Shohei
- Subjects
AVOIDANCE (Psychology) ,INTERNEURONS ,STIMULUS & response (Biology) ,GENETIC transcription ,MOTOR neurons - Abstract
Optimization of the types and timing of avoidance behaviors depending on the intensity of a noxious stimulus is essential for survival; however, processing in the central nervous system and its developmental basis are largely unknown. Here, we report that Caenorhabditis elegans preferentially selects one of three different types of avoidance behaviors depending on the strength of the noxious stimulus. We screened 210 neuronal transcription factors using a combination of optogenetics and RNA interference methods and identified 18 candidates required for avoidance behaviors. One candidate, gene lin-32 (abnormal cell eage ), which encodes an atonal homolog, is required for the neural fate determination of AIB interneurons and functions by regulating the expression of electrical and chemical synapse genes, namely, inx-1 (innexin 1) and AMPA-type ionotropic glutamate receptor glr-1. When examined by Ca imaging, AIB showed an OFF calcium increase to the noxious stimulus. The OFF calcium increase was provoked only by strong stimulation, suggesting a role for optimization of the avoidance behavior. However, lin-32 mutants showed an impaired AIB OFF calcium increase, concomitant with a reduced occurrence of the dynamic avoidance behavior called the "omega turn". The AIB neural responses may be transferred to downstream inter/motor neurons projecting to the neck muscles via electrical synapses comprising inx-1. Finally, we found a correlation between powerful contractions of the neck muscles and omega turns. Thus, the central regulation of the magnitude and timing of activation of the AIB interneurons optimizes the probability of omega turn depending on the stimulus context. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
40. Dynamics and control of sister kinetochore behavior during the meiotic divisions in Drosophila spermatocytes.
- Author
-
Chaurasia, Soumya and Lehner, Christian F.
- Subjects
MEIOSIS ,CHROMOSOMES ,KINETOCHORE ,DROSOPHILA melanogaster ,ANEUPLOIDY - Abstract
Sister kinetochores are connected to the same spindle pole during meiosis I and to opposite poles during meiosis II. The molecular mechanisms controlling the distinct behavior of sister kinetochores during the two meiotic divisions are poorly understood. To study kinetochore behavior during meiosis, we have optimized time lapse imaging with Drosophila spermatocytes, enabling kinetochore tracking with high temporal and spatial resolution through both meiotic divisions. The correct bipolar orientation of chromosomes within the spindle proceeds rapidly during both divisions. Stable bi-orientation of the last chromosome is achieved within ten minutes after the onset of kinetochore-microtubule interactions. Our analyses of mnm and tef mutants, where univalents instead of bivalents are present during meiosis I, indicate that the high efficiency of normal bi-orientation depends on pronounced stabilization of kinetochore attachments to spindle microtubules by the mechanical tension generated by spindle forces upon bi-orientation. Except for occasional brief separation episodes, sister kinetochores are so closely associated that they cannot be resolved individually by light microscopy during meiosis I, interkinesis and at the start of meiosis II. Permanent evident separation of sister kinetochores during M II depends on spindle forces resulting from bi-orientation. In mnm and tef mutants, sister kinetochore separation can be observed already during meiosis I in bi-oriented univalents. Interestingly, however, this sister kinetochore separation is delayed until the metaphase to anaphase transition and depends on the Fzy/Cdc20 activator of the anaphase-promoting complex/cyclosome. We propose that univalent bi-orientation in mnm and tef mutants exposes a release of sister kinetochore conjunction that occurs also during normal meiosis I in preparation for bi-orientation of dyads during meiosis II. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
41. Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion.
- Author
-
Takáts, Szabolcs, Glatz, Gábor, Szenci, Győző, Boda, Attila, Horváth, Gábor V., Hegedűs, Krisztina, Kovács, Attila L., and Juhász, Gábor
- Subjects
SNARE proteins ,AUTOPHAGY ,LYSOSOMES ,DROSOPHILA ,MEMBRANE fusion - Abstract
The autophagosomal SNARE Syntaxin17 (Syx17) forms a complex with Snap29 and Vamp7/8 to promote autophagosome-lysosome fusion via multiple interactions with the tethering complex HOPS. Here we demonstrate that, unexpectedly, one more SNARE (Ykt6) is also required for autophagosome clearance in Drosophila. We find that loss of Ykt6 leads to large-scale accumulation of autophagosomes that are unable to fuse with lysosomes to form autolysosomes. Of note, loss of Syx5, the partner of Ykt6 in ER-Golgi trafficking does not prevent autolysosome formation, pointing to a more direct role of Ykt6 in fusion. Indeed, Ykt6 localizes to lysosomes and autolysosomes, and forms a SNARE complex with Syx17 and Snap29. Interestingly, Ykt6 can be outcompeted from this SNARE complex by Vamp7, and we demonstrate that overexpression of Vamp7 rescues the fusion defect of ykt6 loss of function cells. Finally, a point mutant form with an RQ amino acid change in the zero ionic layer of Ykt6 protein that is thought to be important for fusion-competent SNARE complex assembly retains normal autophagic activity and restores full viability in mutant animals, unlike palmitoylation or farnesylation site mutant Ykt6 forms. As Ykt6 and Vamp7 are both required for autophagosome-lysosome fusion and are mutually exclusive subunits in a Syx17-Snap29 complex, these data suggest that Vamp7 is directly involved in membrane fusion and Ykt6 acts as a non-conventional, regulatory SNARE in this process. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
42. Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo.
- Author
-
Schaefer, Kristina N., Bonello, Teresa T., Zhang, Shiping, Williams, Clara E., Roberts, David M., McKay, Daniel J., and Peifer, Mark
- Subjects
WNT signal transduction ,CELL communication ,EMBRYOLOGY ,TUMOR suppressor genes ,CELLULAR signal transduction ,CYTOLOGY - Abstract
Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
43. Sexual dimorphism of sleep regulated by juvenile hormone signaling in Drosophila.
- Author
-
Wu, Binbin, Ma, Lingling, Zhang, Enyan, Du, Juan, Liu, Suning, Price, Jeffrey, Li, Sheng, and Zhao, Zhangwu
- Subjects
DROSOPHILA melanogaster ,SEXUAL dimorphism ,JUVENILE hormones ,DEVELOPMENTAL biology ,GENE expression ,INSECTS - Abstract
Sexually dimorphic phenotypes are a universal phenomenon in animals. In the model animal fruit fly Drosophila, males and females exhibit long- and short-sleep phenotypes, respectively. However, the mechanism is still a mystery. In this study, we showed that juvenile hormone (JH) is involved in regulation of sexually dimorphic sleep in Drosophila, in which gain of JH function enlarges differences of the dimorphic sleep phenotype with higher sleep in males and lower sleep in females, while loss of JH function blurs these differences and results in feminization of male sleep and masculinization of female sleep. Further studies indicate that germ cell-expressed (GCE), one of the JH receptors, mediates the response in the JH pathway because the sexually dimorphic sleep phenotypes cannot be rescued by JH hormone in a gce deletion mutant. The JH-GCE regulated sleep dimorphism is generated through the sex differentiation-related genes -fruitless (fru) and doublesex (dsx) in males and sex-lethal (sxl), transformer (tra) and doublesex (dsx) in females. These are the “switch” genes that separately control the sleep pattern in males and females. Moreover, analysis of sleep deprivation and circadian behaviors showed that the sexually dimorphic sleep induced by JH signals is a change of sleep drive and independent of the circadian clock. Furthermore, we found that JH seems to also play an unanticipated role in antagonism of an aging-induced sleep decrease in male flies. Taken together, these results indicate that the JH signal pathway is critical for maintenance of sexually dimorphic sleep by regulating sex-relevant genes. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
44. Common α-globin variants modify hematologic and other clinical phenotypes in sickle cell trait and disease.
- Author
-
Raffield, Laura M., Ulirsch, Jacob C., Naik, Rakhi P., Lessard, Samuel, Handsaker, Robert E., Jain, Deepti, Kang, Hyun M., Pankratz, Nathan, Auer, Paul L., Bao, Erik L., Smith, Joshua D., Lange, Leslie A., Lange, Ethan M., Li, Yun, Thornton, Timothy A., Young, Bessie A., Abecasis, Goncalo R., Laurie, Cathy C., Nickerson, Deborah A., and McCarroll, Steven A.
- Subjects
THALASSEMIA ,SICKLE cell anemia ,DISEASE complications ,GLOBIN ,ANEMIA ,GLOMERULAR filtration rate - Abstract
Co-inheritance of α-thalassemia has a significant protective effect on the severity of complications of sickle cell disease (SCD), including stroke. However, little information exists on the association and interactions for the common African ancestral α-thalassemia mutation (−α3.7 deletion) and β-globin traits (HbS trait [SCT] and HbC trait) on important clinical phenotypes such as red blood cell parameters, anemia, and chronic kidney disease (CKD). In a community-based cohort of 2,916 African Americans from the Jackson Heart Study, we confirmed the expected associations between SCT, HbC trait, and the −α3.7 deletion with lower mean corpuscular volume/mean corpuscular hemoglobin and higher red blood cell count and red cell distribution width. In addition to the recently recognized association of SCT with lower estimated glomerular filtration rate and glycated hemoglobin (HbA1c), we observed a novel association of the −α3.7 deletion with higher HbA1c levels. Co-inheritance of each additional copy of the −α3.7 deletion significantly lowered the risk of anemia and chronic kidney disease among individuals with SCT (P-interaction = 0.031 and 0.019, respectively). Furthermore, co-inheritance of a novel α-globin regulatory variant was associated with normalization of red cell parameters in individuals with the −α3.7 deletion and significantly negated the protective effect of α-thalassemia on stroke in 1,139 patients with sickle cell anemia from the Cooperative Study of Sickle Cell Disease (CSSCD) (P-interaction = 0.0049). Functional assays determined that rs11865131, located in the major alpha-globin enhancer MCS-R2, was the most likely causal variant. These findings suggest that common α- and β-globin variants interact to influence hematologic and clinical phenotypes in African Americans, with potential implications for risk-stratification and counseling of individuals with SCD and SCT. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
45. Parallel roles of transcription factors dFOXO and FER2 in the development and maintenance of dopaminergic neurons.
- Author
-
Tas, Damla, Stickley, Luca, Miozzo, Federico, Koch, Rafael, Loncle, Nicolas, Sabado, Virginie, Gnägi, Bettina, and Nagoshi, Emi
- Subjects
FORKHEAD transcription factors ,DOPAMINERGIC neurons ,NEURODEGENERATION ,CELL death ,DROSOPHILA - Abstract
Forkhead box (FOXO) proteins are evolutionarily conserved, stress-responsive transcription factors (TFs) that can promote or counteract cell death. Mutations in FOXO genes are implicated in numerous pathologies, including age-dependent neurodegenerative disorders, such as Parkinson’s disease (PD). However, the complex regulation and downstream mechanisms of FOXOs present a challenge in understanding their roles in the pathogenesis of PD. Here, we investigate the involvement of FOXO in the death of dopaminergic (DA) neurons, the key pathological feature of PD, in Drosophila. We show that dFOXO null mutants exhibit a selective loss of DA neurons in the subgroup crucial for locomotion, the protocerebral anterior medial (PAM) cluster, during development as well as in adulthood. PAM neuron-targeted adult-restricted knockdown demonstrates that dFOXO in adult PAM neurons tissue-autonomously promotes neuronal survival during aging. We further show that dFOXO and the bHLH-TF 48-related-2 (FER2) act in parallel to protect PAM neurons from different forms of cellular stress. Remarkably, however, dFOXO and FER2 share common downstream processes leading to the regulation of autophagy and mitochondrial morphology. Thus, overexpression of one can rescue the loss of function of the other. These results indicate a role of dFOXO in neuroprotection and highlight the notion that multiple genetic and environmental factors interact to increase the risk of DA neuron degeneration and the development of PD. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
46. Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila.
- Author
-
Sakakibara, Yasufumi, Sekiya, Michiko, Fujisaki, Naoki, Quan, Xiuming, and Iijima, Koichi M.
- Subjects
WOLFRAM syndrome ,DROSOPHILA ,ATROPHY ,ENDOPLASMIC reticulum ,DIABETES - Abstract
Wolfram syndrome (WS), caused by loss-of-function mutations in the Wolfram syndrome 1 gene (WFS1), is characterized by juvenile-onset diabetes mellitus, bilateral optic atrophy, and a wide spectrum of neurological and psychiatric manifestations. WFS1 encodes an endoplasmic reticulum (ER)-resident transmembrane protein, and mutations in this gene lead to pancreatic β-cell death induced by high levels of ER stress. However, the mechanisms underlying neurodegeneration caused by WFS1 deficiency remain elusive. Here, we investigated the role of WFS1 in the maintenance of neuronal integrity in vivo by knocking down the expression of wfs1, the Drosophila homolog of WFS1, in the central nervous system. Neuronal knockdown of wfs1 caused age-dependent behavioral deficits and neurodegeneration in the fly brain. Knockdown of wfs1 in neurons and glial cells resulted in premature death and significantly exacerbated behavioral deficits in flies, suggesting that wfs1 has important functions in both cell types. Although wfs1 knockdown alone did not promote ER stress, it increased the susceptibility to oxidative stress-, excitotoxicity- or tauopathy-induced behavioral deficits, and neurodegeneration. The glutamate release inhibitor riluzole significantly suppressed premature death phenotypes induced by neuronal and glial knockdown of wfs1. This study highlights the protective role of wfs1 against age-associated neurodegeneration and furthers our understanding of potential disease-modifying factors that determine susceptibility and resilience to age-associated neurodegenerative diseases. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
47. 6-OHDA-induced dopaminergic neurodegeneration in Caenorhabditis elegans is promoted by the engulfment pathway and inhibited by the transthyretin-related protein TTR-33.
- Author
-
Offenburger, Sarah-Lena, Ho, Xue Yan, Tachie-Menson, Theresa, Coakley, Sean, Hilliard, Massimo A., and Gartner, Anton
- Subjects
CAENORHABDITIS elegans ,6-Hydroxydopamine ,DOPAMINERGIC neurons ,NEURODEGENERATION ,TRANSTHYRETIN ,OXIDATIVE stress ,PARKINSON'S disease & genetics - Abstract
Oxidative stress is linked to many pathological conditions including the loss of dopaminergic neurons in Parkinson’s disease. The vast majority of disease cases appear to be caused by a combination of genetic mutations and environmental factors. We screened for genes protecting Caenorhabditis elegans dopaminergic neurons from oxidative stress induced by the neurotoxin 6-hydroxydopamine (6-OHDA) and identified the ranshyretin-elated gene ttr-33. The only described C. elegans transthyretin-related protein to date, TTR-52, has been shown to mediate corpse engulfment as well as axon repair. We demonstrate that TTR-52 and TTR-33 have distinct roles. TTR-33 is likely produced in the posterior arcade cells in the head of C. elegans larvae and is predicted to be a secreted protein. TTR-33 protects C. elegans from oxidative stress induced by paraquat or H
2 O2 at an organismal level. The increased oxidative stress sensitivity of ttr-33 mutants is alleviated by mutations affecting the KGB-1 MAPK kinase pathway, whereas it is enhanced by mutation of the JNK-1 MAPK kinase. Finally, we provide genetic evidence that the C. elegans cell corpse engulfment pathway is required for the degeneration of dopaminergic neurons after exposure to 6-OHDA. In summary, we describe a new neuroprotective mechanism and demonstrate that TTR-33 normally functions to protect dopaminergic neurons from oxidative stress-induced degeneration, potentially by acting as a secreted sensor or scavenger of oxidative stress. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
48. Mutations in Caenorhabditis elegans neuroligin-like glit-1, the apoptosis pathway and the calcium chaperone crt-1 increase dopaminergic neurodegeneration after 6-OHDA treatment.
- Author
-
Offenburger, Sarah-Lena, Jongsma, Elisabeth, and Gartner, Anton
- Subjects
CAENORHABDITIS elegans ,GENETIC mutation ,APOPTOSIS ,MOLECULAR chaperones ,DOPAMINERGIC neurons ,NEURODEGENERATION ,GENETICS - Abstract
The loss of dopaminergic neurons is a hallmark of Parkinson’s disease, the aetiology of which is associated with increased levels of oxidative stress. We used C. elegans to screen for genes that protect dopaminergic neurons against oxidative stress and isolated glit-1 (oactin (Drosophila neuroligin-like) homologue). Loss of the C. elegans neuroligin-like glit-1 causes increased dopaminergic neurodegeneration after treatment with 6-hydroxydopamine (6-OHDA), an oxidative-stress inducing drug that is specifically taken up into dopaminergic neurons. Furthermore, glit-1 mutants exhibit increased sensitivity to oxidative stress induced by H
2 O2 and paraquat. We provide evidence that GLIT-1 acts in the same genetic pathway as the previously identified etraanin TSP-17. After exposure to 6-OHDA and paraquat, glit-1 and tsp-17 mutants show almost identical, non-additive hypersensitivity phenotypes and exhibit highly increased induction of oxidative stress reporters. TSP-17 and GLIT-1 are both expressed in dopaminergic neurons. In addition, the neuroligin-like GLIT-1 is expressed in pharynx, intestine and several unidentified cells in the head. GLIT-1 is homologous, but not orthologous to neuroligins, transmembrane proteins required for the function of synapses. The Drosophila GLIT-1 homologue Gliotactin in contrast is required for epithelial junction formation. We report that GLIT-1 likely acts in multiple tissues to protect against 6-OHDA, and that the epithelial barrier of C. elegans glit-1 mutants does not appear to be compromised. We further describe that hyperactivation of the SKN-1 oxidative stress response pathway alleviates 6-OHDA-induced neurodegeneration. In addition, we find that mutations in the canonical apoptosis pathway and the calcium chaperone crt-1 cause increased 6-OHDA-induced dopaminergic neuron loss. In summary, we report that the neuroligin-like GLIT-1, the canonical apoptosis pathway and the calreticulin CRT-1 are required to prevent 6-OHDA-induced dopaminergic neurodegeneration. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
49. Optical silencing of body wall muscles induces pumping inhibition in Caenorhabditis elegans.
- Author
-
Takahashi, Megumi and Takagi, Shin
- Subjects
CAENORHABDITIS elegans ,MUSCLE cells ,PROTON pumps (Biology) ,GENETIC mutation ,NEUROENDOCRINE system - Abstract
Feeding, a vital behavior in animals, is modulated depending on internal and external factors. In the nematode Caenorhabditis elegans, the feeding organ called the pharynx ingests food by pumping driven by the pharyngeal muscles. Here we report that optical silencing of the body wall muscles, which drive the locomotory movement of worms, affects pumping. In worms expressing the Arch proton pump or the ACR2 anion channel in the body wall muscle cells, the pumping rate decreases after activation of Arch or ACR2 with light illumination, and recovers gradually after terminating illumination. Pumping was similarly inhibited by illumination in locomotion-defective mutants carrying Arch, suggesting that perturbation of locomotory movement is not critical for pumping inhibition. Analysis of mutants and cell ablation experiments showed that the signals mediating the pumping inhibition response triggered by activation of Arch with weak light are transferred mainly through two pathways: one involving gap junction-dependent mechanisms through pharyngeal I1 neurons, which mediate fast signals, and the other involving dense-core vesicle-dependent mechanisms, which mediate slow signals. Activation of Arch with strong light inhibited pumping strongly in a manner that does not rely on either gap junction-dependent or dense-core vesicle-dependent mechanisms. Our study revealed a new aspect of the neural and neuroendocrine controls of pumping initiated from the body wall muscles. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
50. Post-guidance signaling by extracellular matrix-associated Slit/Slit-N maintains fasciculation and position of axon tracts in the nerve cord.
- Author
-
Bhat, Krishna Moorthi
- Subjects
GENE expression ,AXONS ,EXTRACELLULAR matrix ,NEURONS ,PROTEINS - Abstract
Axon-guidance by Slit-Roundabout (Robo) signaling at the midline initially guides growth cones to synaptic targets and positions longitudinal axon tracts in discrete bundles on either side of the midline. Following the formation of commissural tracts, Slit is found also in tracts of the commissures and longitudinal connectives, the purpose of which is not clear. The Slit protein is processed into a larger N-terminal peptide and a smaller C-terminal peptide. Here, I show that Slit and Slit-N in tracts interact with Robo to maintain the fasciculation, the inter-tract spacing between tracts and their position relative to the midline. Thus, in the absence of Slit in post-guidance tracts, tracts de-fasciculate, merge with one another and shift their position towards the midline. The Slit protein is proposed to function as a gradient. However, I show that Slit and Slit-N are not freely lpresent in the extracellular milieu but associated with the extracellular matrix (ECM) and both interact with Robo1. Slit-C is tightly associated with the ECM requiring collagenase treatment to release it, and it does not interact with Robo1. These results define a role for Slit and Slit-N in tracts for the maintenance and fasciculation of tracts, thus the maintenance of the hardwiring of the CNS. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.