1. Taming Algorithmic Priority Inversion in Mission-Critical Perception Pipelines.
- Author
-
Liu, Shengzhong, Yao, Shuochao, Fu, Xinzhe, Tabish, Rohan, Yu, Simon, Bansal, Ayoosh, Yun, Heechul, Sha, Lui, and Abdelzaher, Tarek
- Subjects
ALGORITHMS ,SYSTEMS design ,CYBER physical systems ,COMPUTER scheduling ,ARTIFICIAL intelligence ,ARTIFICIAL neural networks ,FIRST in, first out (Queuing theory) - Abstract
The paper discusses algorithmic priority inversion in mission-critical machine inference pipelines used in modern neural-network-based perception subsystems and describes a solution to mitigate its effect. In general, priority inversion occurs in computing systems when computations that are "less important" are performed together with or ahead of those that are "more important." Significant priority inversion occurs in existing machine inference pipelines when they do not differentiate between critical and less critical data. We describe a framework to resolve this problem and demonstrate that it improves a perception system's ability to react to critical inputs, while at the same time reducing platform cost. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF