1. Mapping Soil Surface Moisture of an Agrophytocenosis via a Neural Network Based on Synchronized Radar and Multispectral Optoelectronic Data of SENTINEL-1,2—Case Study on Test Sites in the Lower Volga Region.
- Author
-
Zeyliger, Anatoly, Muzalevskiy, Konstantin, Ermolaeva, Olga, Grecheneva, Anastasia, Zinchenko, Ekaterina, and Gerts, Jasmina
- Abstract
In this article, the authors developed a novel method for the moisture mapping of the soil surface of agrophytocenosis using a neural network based on synchronized radar and multispectral optoelectronic data from Sentinel-1,2. The significance of this research lies in its potential to enhance precision farming practices, which are increasingly vital in addressing global agricultural challenges such as water scarcity and the need for sustainable resource management. To verify the developed method, data from two experimental plots were utilized. These plots were located on irrigated soybean crops, with the first plot situated on the right bank (plot No. 1) and the second on the left bank (plot No. 2) of the lower Volga River. Two experimental soil moisture geodatasets were created through measurements and geo-referencing points using the gravimetric method (for plot No. 1) and the proximal sensing method (for plot No. 2) employing the Soil Moisture Sensor ML3-KIT (THETAKIT, Delta). The soil moisture retrieval algorithm was based on the use of a neural network to predict the reflection coefficient of an electro-magnetic wave from the soil surface, followed by inversion into soil moisture using a dielectric model that takes into account the soil texture. The input parameter of the neural network was the ratio of the microwave radar vegetation index (calculated based on Sentinel-1 data) to the index (calculated based on the data of multispectral optoelectronic channels 8 and 11 of Sentinel-2). The retrieved soil moisture values were compared with in situ measurements, showing a determination coefficient of 0.44–0.65 and a standard deviation of 2.4–4.2% for plot No. 1 and similar metrics for plot No. 2. The conducted research laid the groundwork for developing a new technology for remote sensing of soil moisture content in agrophytocenosis, serving as a crucial component of precision farming systems and agroecology. The integration of this technology promotes sustainable agricultural practices by minimizing water consumption while maximizing crop productivity. This aligns with broader environmental goals of conserving natural resources and reducing agricultural runoff. On a larger scale, data derived from such studies can inform policy decisions related to water resource management, guiding regulations that promote efficient water use in agriculture. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF