1. Scale Normalized Image Pyramids With AutoFocus for Object Detection.
- Author
-
Singh, Bharat, Najibi, Mahyar, Sharma, Abhishek, and Davis, Larry S.
- Subjects
OBJECT recognition (Computer vision) ,PYRAMIDS ,FEATURE extraction - Abstract
We present an efficient foveal framework to perform object detection. A scale normalized image pyramid (SNIP) is generated that, like human vision, only attends to objects within a fixed size range at different scales. Such a restriction of objects’ size during training affords better learning of object-sensitive filters, and therefore, results in better accuracy. However, the use of an image pyramid increases the computational cost. Hence, we propose an efficient spatial sub-sampling scheme which only operates on fixed-size sub-regions likely to contain objects (as object locations are known during training). The resulting approach, referred to as Scale Normalized Image Pyramid with Efficient Resampling or SNIPER, yields up to 3× speed-up during training. Unfortunately, as object locations are unknown during inference, the entire image pyramid still needs processing. To this end, we adopt a coarse-to-fine approach, and predict the locations and extent of object-like regions which will be processed in successive scales of the image pyramid. Intuitively, it's akin to our active human-vision that first skims over the field-of-view to spot interesting regions for further processing and only recognizes objects at the right resolution. The resulting algorithm is referred to as AutoFocus and results in a 2.5-5× speed-up during inference when used with SNIP. Code: https://github.com/mahyarnajibi/SNIPER. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF