1. Structural constraints limit the regime of optimal flux in autocatalytic reaction networks.
- Author
-
Despons, Armand, De Decker, Yannick, and Lacoste, David
- Subjects
AUTOCATALYSIS ,THERMODYNAMICS ,CHEMICAL reactions ,NUMBER systems ,STOICHIOMETRY ,METABOLIC models - Abstract
Autocatalytic chemical networks play a predominant role in a large number of natural systems such as in metabolic pathways and in ecological networks. Despite recent efforts, the precise impact of thermodynamic constraints on these networks remains elusive. In this work, we present a theoretical framework that allows specific bounds on the thermodynamic affinity and on the concentrations of autocatalysts in mass-action autocatalytic networks. These bounds can be obtained solely from the stoichiometry of the underlying chemical reaction network, and are independent from the numerical values of kinetic parameters. This property holds in the specific regime where all the fluxes of the network are tightly coupled and maximal. Our method is applicable to large networks, and can be used to complement constraints-based modeling methods of metabolic networks, which typically do not provide predictions about thermodynamic properties or concentration ranges of metabolites. Autocatalytic chemical networks are crucial in natural systems like metabolic pathways and ecological networks. This study presents a framework to find bounds on thermodynamic affinity and autocatalyst concentrations using stoichiometry, enhancing our understanding of these networks' behavior without relying on kinetic parameters. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF