1. Resistance mediated by alternative receptor tyrosine kinases in FGFR1-amplified lung cancer.
- Author
-
Yuta Adachi, Kazuyoshi Watanabe, Kenji Kita, Hidenori Kitai, Hiroshi Kotani, Yuki Sato, Naohiko Inase, Seiji Yano, and Hiromichi Ebi
- Subjects
FIBROBLAST growth factors ,PROTEIN-tyrosine kinases ,SQUAMOUS cell carcinoma ,LUNG cancer ,PHOSPHOINOSITIDES - Abstract
Fibroblast growth factor receptor 1 (FGFR1) amplification has been identified in 10-20% of patients with squamous nonsmall- cell lung cancer. Preclinical models showed promising activity of specific FGFR inhibitors, but early clinical trials showed that only a small fraction of patients with FGFR1-amplified lung cancer responded to FGFR inhibitors. These unsatisfactory results were partly explained by heterogeneous amplicons around the 8p11 genomic region, leading to falsepositive amplification results. Furthermore, discrepancies in the gene amplification and protein expression of FGFR1 were also reported. In this study, we identified the roles of alternative receptor tyrosine kinases (RTKs) in FGFR1-amplified lung cancer. These alternative RTKs dominantly activate phosphoinositide 3-kinase-AKT signaling and also mitigate sustained inhibition of mitogen-activated protein kinase signaling by FGFR inhibitors. The rebound activation of extracellular signalregulated kinase phosphorylation was associated with sensitivity to the drugs. Combinatorial inhibition of alternative RTKs and FGFR1 was required to suppress both AKT and extracellular signal-regulated kinase phosphorylation and to induce key pro-apoptotic proteins BIM and p53 upregulated modulator of apoptosis (PUMA). Furthermore, even in FGFR inhibitor-sensitive NCI-H1581 lung cancer cells, MET-expressing clones were already detectable at a very low frequency before resistance induction. Selection of these pre-existing subclones resulted in FGFR inhibitor resistance because of the activation of AKT and extracellular signal-regulated kinase by MET signaling that was mediated by GRB2 associated binding protein 1 (GAB1). These results suggest that incomplete suppression of key survival signals led to intrinsic and acquired resistance to FGFR inhibitors. Our results may help explain the low clinical response rates to FGFR inhibitors in FGFR1-amplified lung cancer. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF