1. Dietary ellagic acid attenuates oxidized LDL uptake and stimulates cholesterol efflux in murine macrophages.
- Author
-
Park SH, Kim JL, Lee ES, Han SY, Gong JH, Kang MK, Kang YH, Park, Sin-Hye, Kim, Jung-Lye, Lee, Eun-Sook, Han, Seon-Young, Gong, Ju-Hyun, Kang, Min-Kyung, and Kang, Young-Hee
- Abstract
Foam cell formation is the hallmark of early atherosclerosis. Lipid uptake by scavenger receptors (SR) in macrophages initiates chronic proinflammatory cascades linked to atherosclerosis. It has been reported that the upregulation of cholesterol efflux may be protective in the development of atherosclerosis. Ellagic acid, a polyphenolic compound mostly found in berries, walnuts, and pomegranates, possesses antioxidative, growth-inhibiting and apoptosis-promoting activities in cancer cells. However, the antiatherogenic actions of ellagic acid are not well defined. The current study elucidated oxidized LDL handling of ellagic acid in J774A1 murine macrophages. Noncytotoxic ellagic acid suppressed SR-B1 induction and foam cell formation within 6 h after the stimulation of macrophages with oxidized LDL, confirmed by Oil red O staining of macrophages. Ellagic acid at ≤5 μmol/L upregulated PPARγ and ATP binding cassette transporter-1 in lipid-laden macrophages, all responsible for cholesterol efflux. In addition, 5 μmol/L ellagic acid accelerated expression and transcription of the nuclear receptor of liver X receptor-α highly implicated in the PPAR signaling. Furthermore, ellagic acid promoted cholesterol efflux in oxidized LDL-induced foam cells. These results provide new information that ellagic acid downregulated macrophage lipid uptake to block foam cell formation of macrophages and boosted cholesterol efflux in lipid-laden foam cells. Therefore, dietary and pharmacological interventions with berries rich in ellagic acid may be promising treatment strategies to interrupt the development of atherosclerosis. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF