1. Solid Solution Domains at Phase Transition Front of LixNi0.5Mn1.5O4.
- Author
-
Hideyuki Komatsu, Hajime Arai, Yukinori Koyama, Kenji Sato, Takeharu Kato, Ryuji Yoshida, Haruno Murayama, Ikuma Takahashi, Yuki Orikasa, Katsutoshi Fukuda, Tsukasa Hirayama, Yuichi Ikuhara, Yoshio Ukyo, Yoshiharu Uchimoto, and Zempachi Ogumi
- Subjects
SOLID solutions ,LITHIUM-ion batteries ,X-ray diffraction ,TRANSMISSION electron microscopy ,ELECTRON energy loss spectroscopy ,ELECTRODES - Abstract
Nickel-substituted manganese spinel LiNi
0.5 Mn1.5 O4 (LNMO) is a promising 5 V class positive electrode material for lithium-ion batteries. As micronsized LNMO particles show high rate capability in its two-phase coexistence regions, the phase transition mechanism is of great interest in understanding the electrode behavior at high rates. Here, the phase transition dynamics of Lix Ni0.5 Mn1.5 O4 is elucidated on high rate charging-discharging using operando time-resolved X-ray diffraction (TR-XRD). The TR-XRD results indicate the existence of intermediate states, in addition to the thermodynamically stable phases, and it is shown that the origin of such intermediate states is ascribed to the solid-solution domains at the phase transition front, as supported by the analysis using transmission electron microscopy coupled with electron energy-loss spectroscopy. The phase transition pathways dependent on the reaction rate are shown, together with possible explanation for this unique transition behavior. [ABSTRACT FROM AUTHOR]- Published
- 2015
- Full Text
- View/download PDF