1. Generalized fast marching method: applications to image segmentation.
- Author
-
Nicolas Forcadel, Carole Le Guyader, and Christian Gout
- Subjects
IMAGE processing ,ALGORITHMS ,EXTENSION (Logic) ,MATHEMATICS - Abstract
Abstract In this paper, we propose a segmentation method based on the generalized fast marching method (GFMM) developed by Carlini et al. (submitted). The classical fast marching method (FMM) is a very efficient method for front evolution problems with normal velocity (see also Epstein and Gage, The curve shortening flow. In: Chorin, A., Majda, A. (eds.) Wave Motion: Theory, Modelling and Computation, 1997) of constant sign. The GFMM is an extension of the FMM and removes this sign constraint by authorizing time-dependent velocity with no restriction on the sign. In our modelling, the velocity is borrowed from the Chan–Vese model for segmentation (Chan and Vese, IEEE Trans Image Process 10(2):266–277, 2001). The algorithm is presented and analyzed and some numerical experiments are given, showing in particular that the constraints in the initialization stage can be weakened and that the GFMM offers a powerful and computationally efficient algorithm. [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF