1. The Role of Coulomb Interactions for Spin Crossover Behaviors and Crystal Structural Transformation in Novel Anionic Fe(III) Complexes from a π-Extended ONO Ligand.
- Author
-
Suguru Murata, Kazuyuki Takahashi, Takahiro Sakurai, Hitoshi Ohta, Takashi Yamamoto, Yasuaki Einaga, Yoshihito Shiota, and Kazunari Yoshizawa
- Subjects
COULOMB functions ,SPIN crossover ,CRYSTAL structure - Abstract
To investigate the π-extension effect on an unusual negative-charged spin crossover (SCO) Fe
III complex with a weak N2 O4 first coordination sphere, we designed and synthesized a series of anionic FeIII complexes from a π-extended naphthalene derivative ligand. Acetonitrile-solvate tetramethylammonium (TMA) salt 1 exhibited an SCO conversion, while acetone-solvate TMA salt 2 was in a high-spin state. The crystal structural analysis for 2 revealed that two-leg ladder-like cation-anion arrays derived from π-stacking interactions between π-ligands of the FeIII complex anion and Coulomb interactions were found and the solvated acetone molecules were in one-dimensional channels between the cation-anion arrays. A desolvation-induced single-crystal-to-single-crystal transformation to desolvate compound 2' may be driven by Coulomb energy gain. Furthermore, the structural comparison between quasi-polymorphic compounds 1 and 2 revealed that the synergy between Coulomb and π-stacking interactions induces a significant distortion of coordination structure of 2. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF