1. Determination of trace elements in high-purity copper by ETV-ICP OES using halocarbons as chemical modifiers.
- Author
-
Jürgen Hassler, Peter Barth, Silke Richter, and Ralf Matschat
- Subjects
TRACE elements ,COPPER ,HALOCARBONS ,INDUCTIVELY coupled plasma atomic emission spectrometry ,HALOGENATION ,OXIDATION ,CALIBRATION - Abstract
Inspired by the globule arc technique a new electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP OES) method was developed for the analysis of high-purity copper materials. The performance of the method was investigated for the analytes Ag, Al, As, Bi, Cd, Co, Cr, Fe, Mg, Mn, Ni, P, Pb, S, Sb, Se, Si, Sn, Te, Ti, Zn and Zr. ETV parameters were optimized regarding the release of the analytes, the transport efficiency and the quality of analytical results in terms of precision, trueness and power of detection. The influence of CCl2F2, CHClF2, C2H2F4and CHF3as gaseous halogenation modifiers was investigated. A sufficient in situanalyte matrix separation was achieved by using CHF3as halogenating reagent avoiding a high matrix input from the molten copper sample into the ETV system and the plasma. A complete release from the samples was obtained for all investigated analytes except Se and Te. Acceptable results for the determination of the trace elements Ag, Al, As, Bi, Cd, Co, Cr, Fe, Mg, Mn, Ni, P, Pb, S, Sb, Si, Sn, Ti, Zn and Zr in high-purity copper were achieved. The method includes a preceding sample preparation step of oxidizing the surface of copper samples which results in a significantly enhanced sensitivity. In addition to the calibration with copper samples, the feasibility of the calibration with liquid multi-element solutions was investigated. Except for Ag, Mg and Ni all analytes could be analyzed using aqueous calibration solutions. The trueness of the method was tested by the determination of analyte contents of certified reference materials. Limits of quantification ranging from 0.6 ng g−1to 29 ng g−1were achieved. The developed direct solid sampling method is time and cost effective and well suited for the characterization of high-purity copper materials. The method can be automated to a large extent and is applicable for processes accompanying analyses. In contrast to all other investigated trace elements, Se and Te were not released from the matrix at measurable levels under the used conditions. The determination of these elements is still under investigation and will be reported in a succeeding publication. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF