1. Non-Abelian topological order and anyons on a trapped-ion processor.
- Author
-
Iqbal, Mohsin, Tantivasadakarn, Nathanan, Verresen, Ruben, Campbell, Sara L., Dreiling, Joan M., Figgatt, Caroline, Gaebler, John P., Johansen, Jacob, Mills, Michael, Moses, Steven A., Pino, Juan M., Ransford, Anthony, Rowe, Mary, Siegfried, Peter, Stutz, Russell P., Foss-Feig, Michael, Vishwanath, Ashvin, and Dreyer, Henrik
- Abstract
Non-Abelian topological order is a coveted state of matter with remarkable properties, including quasiparticles that can remember the sequence in which they are exchanged1–4. These anyonic excitations are promising building blocks of fault-tolerant quantum computers5,6. However, despite extensive efforts, non-Abelian topological order and its excitations have remained elusive, unlike the simpler quasiparticles or defects in Abelian topological order. Here we present the realization of non-Abelian topological order in the wavefunction prepared in a quantum processor and demonstrate control of its anyons. Using an adaptive circuit on Quantinuum’s H2 trapped-ion quantum processor, we create the ground-state wavefunction of D
4 topological order on a kagome lattice of 27 qubits, with fidelity per site exceeding 98.4 per cent. By creating and moving anyons along Borromean rings in spacetime, anyon interferometry detects an intrinsically non-Abelian braiding process. Furthermore, tunnelling non-Abelions around a torus creates all 22 ground states, as well as an excited state with a single anyon—a peculiar feature of non-Abelian topological order. This work illustrates the counterintuitive nature of non-Abelions and enables their study in quantum devices.A trapped-ion quantum processor is used to create ground-states and excitations of non-Abelian topological order on a kagome lattice of 27 qubits with high fidelity. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF