1. Suppressing MTERF3 inhibits proliferation of human hepatocellular carcinoma via ROS-mediated p38 MAPK activation.
- Author
-
Zheng, Zhihai, Zhao, Youjuan, Yu, Hongjia, Wang, Tingting, Li, Jinhai, Xu, Liang, Ding, Chunming, He, Lan, Wu, Lijun, and Dong, Zhixiong
- Subjects
HEPATOCELLULAR carcinoma ,MITOGEN-activated protein kinases ,CELL cycle ,MITOCHONDRIAL DNA ,INHIBITION of cellular proliferation - Abstract
Mitochondrial transcription termination factor 3 (MTERF3) negatively regulates mitochondrial DNA transcription. However, its role in hepatocellular carcinoma (HCC) progression remains elusive. Here, we investigate the expression and function of MTERF3 in HCC. MTERF3 is overexpressed in HCC tumor tissues and higher expression of MTERF3 positively correlates with poor overall survival of HCC patients. Knockdown of MTERF3 induces mitochondrial dysfunction, S-G2/M cell cycle arrest and apoptosis, resulting in cell proliferation inhibition. In contrast, overexpression of MTERF3 promotes cell cycle progression and cell proliferation. Mechanistically, mitochondrial dysfunction induced by MTERF3 knockdown promotes ROS accumulation, activating p38 MAPK signaling pathway to suppress HCC cell proliferation. In conclusion, ROS accumulation induced by MTERF3 knockdown inhibits HCC cell proliferation via p38 MAPK signaling pathway suggesting a promising target in HCC patients. Targeting mitochondrial transcription termination factor MTERF3 induces mitochondrial dysfunction and inhibits the proliferation via activating ROS-dependent p38 MAPK pathway in hepatocellular carcinoma. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF