1. Prepartition: Load Balancing Approach for Virtual Machine Reservations in a Cloud Data Center.
- Author
-
Tian, Wen-Hong, Xu, Min-Xian, Zhou, Guang-Yao, Wu, Kui, Xu, Cheng-Zhong, and Buyya, Rajkumar
- Subjects
VIRTUAL machine systems ,ONLINE algorithms ,RESOURCE allocation ,LOAD balancing (Computer networks) ,PRODUCTION scheduling ,SERVER farms (Computer network management) - Abstract
Load balancing is vital for the efficient and long-term operation of cloud data centers. With virtualization, post (reactive) migration of virtual machines (VMs) after allocation is the traditional way for load balancing and consolidation. However, it is not easy for reactive migration to obtain predefined load balance objectives and it may interrupt services and bring instability. Therefore, we provide a new approach, called Prepartition, for load balancing. It partitions a VM request into a few sub-requests sequentially with start time, end time and capacity demands, and treats each sub-request as a regular VM request. In this way, it can proactively set a bound for each VM request on each physical machine and makes the scheduler get ready before VM migration to obtain the predefined load balancing goal, which supports the resource allocation in a fine-grained manner. Simulations with real-world trace and synthetic data show that our proposed approach with offline version (PrepartitionOff) scheduling has 10%–20% better performance than the existing load balancing baselines under several metrics, including average utilization, imbalance degree, makespan and Capacity_makespan. We also extend Prepartition to online load balancing. Evaluation results show that our proposed approach also outperforms state-of-the-art online algorithms. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF