1. The stability and self-assembly of tri-calcium silicate and hydroxyapatite scaffolds in bone tissue engineering applications.
- Author
-
Beheshtizadeh, Nima, Seraji, Amir Abbas, Azadpour, Behnam, and Rezvantalab, Sima
- Abstract
The fabrication of scaffolds for bone tissue engineering (BTE) applications often involves the utilization of two distinct categories of biomaterials, namely calcium phosphates and calcium silicates. The selection of these materials is based on their biocompatibility, bioactivity, and mechanical characteristics that closely resemble those of natural bone. The present research examined the utilization of hydroxyapatite (HAP) and tri-calcium silicate (TCS), which are among the most commonly utilized materials in calcium phosphates and calcium silicates, in the context of bone scaffolding applications. A molecular dynamics simulation was conducted to investigate the impact of different concentrations of ceramic nanoparticles, when combined with sodium alginate (SA) hydrogel, on the fabrication of bone scaffolds. The stability and self-assembly were assessed through several parameters, such as the solvent-accessible surface area (SASA), radius of gyration (Rg), radial distribution function (g(r)), root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), hydrogen bonding, van der Waals, electrostatic, and total energies. The findings indicate that the addition of 10 wt% HAP and TCS to the SA hydrogel matrix results in a more compact, stable, and potentially less hydrated structure. Accordingly, the experimental validation of these simulation approved our in silico findings. Experimental rheology and mechanical properties evaluation validate our simulation results, indicating a superior characteristic of TCS10 and HAP10 inks and 3D-printed scaffolds among other composition ratios. This could potentially benefit the in vitro and in vivo performance of the scaffold and its interaction with cells. The aforementioned traits are considered fundamental for the successful execution of the scaffold in the field of BTE. The findings indicate that TCS samples exhibit superior properties when compared to HAP samples, specifically in terms of composition with SA hydrogel. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF