1. Green Wearable Sensors and Antennas for Bio-Medicine, Green Internet of Things, Energy Harvesting, and Communication Systems.
- Author
-
Sabban, Albert
- Subjects
SMART devices ,METAMATERIAL antennas ,HAZARDOUS wastes ,DIPOLE antennas ,CLEAN energy - Abstract
This paper presents innovations in green electronic and computing technologies. The importance and the status of the main subjects in green electronic and computing technologies are presented in this paper. In the last semicentennial, the planet suffered from rapid changes in climate. The planet is suffering from increasingly wild storms, hurricanes, typhoons, hard droughts, increases in seawater height, floods, seawater acidification, decreases in groundwater reserves, and increases in global temperatures. These climate changes may be irreversible if companies, organizations, governments, and individuals do not act daily and rapidly to save the planet. Unfortunately, the continuous growth in the number of computing devices, cellular devices, smartphones, and other smart devices over the last fifty years has resulted in a rapid increase in climate change. It is severely crucial to design energy-efficient "green" technologies and devices. Toxic waste from computing and cellular devices is rapidly filling up landfills and increasing air and water pollution. This electronic waste contains hazardous and toxic materials that pollute the environment and affect our health. Green computing and electronic engineering are employed to address this climate disaster. The development of green materials, green energy, waste, and recycling are the major objectives in innovation and research in green computing and electronics technologies. Energy-harvesting technologies can be used to produce and store green energy. Wearable active sensors and metamaterial antennas with circular split ring resonators (CSSRs) containing energy-harvesting units are presented in this paper. The measured bandwidth of the matched sensor is around 65% for VSWR, which is better than 3:1. The sensor gain is 14.1 dB at 2.62 GHz. A wideband 0.4 GHz to 6.4 GHz slot antenna with an RF energy-harvesting unit is presented in this paper. The Skyworks Schottky diode, SMS-7630, was used as the rectifier diode in the harvesting unit. If we transmit 20 dBm of RF power from a transmitting antenna that is located 0.2 m from the harvesting slot antenna at 2.4 GHz, the output voltage at the output port of the harvesting unit will be around 1 V. The power conversion efficiency of the metamaterial antenna dipole with metallic strips is around 75%. Wearable sensors with energy-harvesting units provide efficient, low-cost healthcare services that contribute to a green environment and minimize energy consumption. The measurement process and setups of wearable sensors are presented in this paper. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF