5 results on '"Adnot S"'
Search Results
2. Gene expression in lungs of mice lacking the 5-hydroxytryptamine transporter gene
- Author
-
Eddahibi Saadia, Adnot Serge, Harral Julie, Crona Daniel, and West James
- Subjects
Diseases of the respiratory system ,RC705-779 - Abstract
Abstract Background While modulation of the serotonin transporter (5HTT) has shown to be a risk factor for pulmonary arterial hypertension for almost 40 years, there is a lack of in vivo data about the broad molecular effects of pulmonary inhibition of 5HTT. Previous studies have suggested effects on inflammation, proliferation, and vasoconstriction. The goal of this study was to determine which of these were supported by alterations in gene expression in serotonin transporter knockout mice. Methods Eight week old normoxic mice with a 5-HTT knock-out (5HTT-/-) and their heterozygote(5HTT+/-) or wild-type(5HTT+/+) littermates had right ventricular systolic pressure(RVSP) assessed, lungs collected for RNA, pooled, and used in duplicate in Affymetrix array analysis. Representative genes were confirmed by quantitative RT-PCR and western blot. Results RVSP was normal in all groups. Only 124 genes were reliably changed between 5HTT-/- and 5HTT+/+ mice. More than half of these were either involved in inflammatory response or muscle function and organization; in addition, some matrix, heme oxygenase, developmental, and energy metabolism genes showed altered expression. Quantitative RT-PCR for examples from each major group confirmed changes seen by array, with an intermediate level in 5HTT +/- mice. Conclusion These results for the first time show the in vivo effects of 5HTT knockout in lungs, and show that many of the downstream mechanisms suggested by cell culture and ex vivo experiments are also operational in vivo. This suggests that the effect of 5HTT on pulmonary vascular function arises from its impact on several systems, including vasoreactivity, proliferation, and immune function.
- Published
- 2009
- Full Text
- View/download PDF
3. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice
- Author
-
Izziki Mohamed, Rideau Dominique, Tu Ly, Savale Laurent, Maitre Bernard, Adnot Serge, and Eddahibi Saadia
- Subjects
Diseases of the respiratory system ,RC705-779 - Abstract
Abstract Background Inflammation may contribute to the pathogenesis of various forms of pulmonary hypertension (PH). Recent studies in patients with idiopathic PH or PH associated with underlying diseases suggest a role for interleukin-6 (IL-6). Methods To determine whether endogenous IL-6 contributes to mediate hypoxic PH and lung inflammation, we studied IL-6-deficient (IL-6-/-) and wild-type (IL-6+/+) mice exposed to hypoxia for 2 weeks. Results Right ventricular systolic pressure, right ventricle hypertrophy, and the number and media thickness of muscular pulmonary vessels were decreased in IL-6-/- mice compared to wild-type controls after 2 weeks' hypoxia, although the pressure response to acute hypoxia was similar in IL-6+/+ and IL-6-/- mice. Hypoxia exposure of IL-6+/+ mice led to marked increases in IL-6 mRNA and protein levels within the first week, with positive IL-6 immunostaining in the pulmonary vessel walls. Lung IL-6 receptor and gp 130 (the IL-6 signal transducer) mRNA levels increased after 1 and 2 weeks' hypoxia. In vitro studies of cultured human pulmonary-artery smooth-muscle-cells (PA-SMCs) and microvascular endothelial cells revealed prominent synthesis of IL-6 by PA-SMCs, with further stimulation by hypoxia. IL-6 also markedly stimulated PA-SMC migration without affecting proliferation. Hypoxic IL-6-/- mice showed less inflammatory cell recruitment in the lungs, compared to hypoxic wild-type mice, as assessed by lung protein levels and immunostaining for the specific macrophage marker F4/80, with no difference in lung expression of adhesion molecules or cytokines. Conclusion These data suggest that IL-6 may be actively involved in hypoxia-induced lung inflammation and pulmonary vascular remodeling in mice.
- Published
- 2009
- Full Text
- View/download PDF
4. Effects of bone marrow-derived cells on monocrotaline- and hypoxia-induced pulmonary hypertension in mice
- Author
-
Vainchenker William, Giraudier Stéphane, Marcos Elisabeth, Hulin Anne, Saber Guitanouch, Wagner-Ballon Orianne, Raoul William, Adnot Serge, Eddahibi Saadia, and Maitre Bernard
- Subjects
Diseases of the respiratory system ,RC705-779 - Abstract
Abstract Background Bone marrow -derived cells (BMDCs) can either limit or contribute to the process of pulmonary vascular remodeling. Whether the difference in their effects depends on the mechanism of pulmonary hypertension (PH) remains unknown. Objectives We investigated the effect of BMDCs on PH induced in mice by either monocrotaline or exposure to chronic hypoxia. Methods Intravenous administration of the active monocrotaline metabolite (monocrotaline pyrrole, MCTp) to C57BL/6 mice induced PH within 15 days, due to remodeling of small distal vessels. Three days after the MCTp injection, the mice were injected with BMDCs harvested from femurs and tibias of donor mice treated with 5-fluorouracil (3.5 mg IP/animal) to deplete mature cells and to allow proliferation of progenitor cells. Results BMDCs significantly attenuated PH as assessed by reductions in right ventricular systolic pressure (20 ± 1 mmHg vs. 27 ± 1 mmHg, P ≤ 0.01), right ventricle weight/left ventricle+septum weight ratio (0.29 ± 0.02 vs. 0.36 ± 0.01, P ≤ 0.03), and percentage of muscularized vessels (26.4% vs. 33.5%, P ≤ 0.05), compared to control animals treated with irradiated BMDCs. Tracking cells from constitutive GFP-expressing male donor mice with anti-GFP antibodies or chromosome Y level measurement by quantitative real-time PCR showed BMDCs in the lung. In contrast, chronically hypoxic mice subjected to the same procedure failed to show improvement in PH. Conclusion These results show that BMDCs limit pulmonary vascular remodeling induced by vascular injury but not by hypoxia.
- Published
- 2007
- Full Text
- View/download PDF
5. Anorexigen-induced pulmonary hypertension and the serotonin (5-HT) hypothesis: lessons for the future in pathogenesis
- Author
-
Adnot Serge and Eddahibi Saadia
- Subjects
anorexigens ,appetite suppressants ,pulmonary hypertension ,pulmonary vascular smooth muscle cells ,serotonin transporter ,Diseases of the respiratory system ,RC705-779 - Abstract
Abstract Epidemiological studies have established that fenfluramine, D-fenfluramine, and aminorex, but not other appetite suppressants, increase the risk of primary pulmonary hypertension (PH). One current hypothesis suggests that fenfluramine-like medications may act through interactions with the serotonin (5-hydroxytryptamine [5-HT]) transporter (5-HTT) located on pulmonary artery smooth muscle cells and responsible for the mitogenic action of 5-HT. Anorexigens may contribute to PH by boosting 5-HT levels in the bloodstream, directly stimulating smooth muscle cell growth, or altering 5-HTT expression. We suggest that individuals with a high basal level of 5-HTT expression related to the presence of the long 5-HTT gene promoter variant may be particularly susceptible to one or more of these potential mechanisms of appetite-suppressant-related PH.
- Published
- 2002
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.