1. Efficient slope reliability and sensitivity analysis using quantile-based first-order second-moment method
- Author
-
Zhiyong Yang, Chengchuan Yin, Xueyou Li, Shuihua Jiang, and Dianqing Li
- Subjects
Slope reliability ,Sensitivity analysis ,Quantile ,First-order second-moment method (FOSM) ,First-order reliability method (FORM) ,Engineering geology. Rock mechanics. Soil mechanics. Underground construction ,TA703-712 - Abstract
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method (QFOSM). The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids. Based on this geometric interpretation, the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system. The proposed method has the advantage of computational simplicity, akin to the conventional first-order second-moment method (FOSM), while providing estimation accuracy close to that of the first-order reliability method (FORM). Its performance is demonstrated with a numerical example and three slope examples. The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters. The proposed method does not involve complex optimization or iteration required by the FORM. It can provide a valuable complement to the existing approximate reliability analysis methods, offering rapid sensitivity evaluation and slope reliability analysis.
- Published
- 2024
- Full Text
- View/download PDF