1. Gene-edited pseudogene resurrection corrects p47phox-deficient chronic granulomatous disease
- Author
-
Randall K. Merling, Douglas B. Kuhns, Colin L. Sweeney, Xiaolin Wu, Sandra Burkett, Jessica Chu, Janet Lee, Sherry Koontz, Giovanni Di Pasquale, Sandra A. Afione, John A. Chiorini, Elizabeth M. Kang, Uimook Choi, Suk See De Ravin, and Harry L. Malech
- Subjects
Specialties of internal medicine ,RC581-951 - Abstract
Abstract: Pseudogenes are duplicated genes with mutations rendering them nonfunctional. For single-gene disorders with homologous pseudogenes, the pseudogene might be a target for genetic correction. Autosomal-recessive p47phox-deficient chronic granulomatous disease (p47-CGD) is a life-threatening immune deficiency caused by mutations in NCF1, a gene with 2 pseudogenes, NCF1B and NCF1C. The most common NCF1 mutation, a GT deletion (ΔGT) at the start of exon 2 (>90% of alleles), is constitutive to NCF1B and NCF1C. NCF1 ΔGT results in premature termination, undetectable protein expression, and defective production of antimicrobial superoxide in neutrophils. We examined strategies for p47-CGD gene correction using engineered zinc-finger nucleases targeting the exon 2 ΔGT in induced pluripotent stem cells or CD34+ hematopoietic stem cells derived from p47-CGD patients. Correction of ΔGT in NCF1 pseudogenes restores oxidase function in p47-CGD, providing the first demonstration that targeted restoration of pseudogene function can correct a monogenic disorder.
- Published
- 2017
- Full Text
- View/download PDF