1. Mechanical and Tribological Behaviors of U75VG Rail Flash−Butt Welded Joint
- Author
-
Bin Rong, Shaopeng Liu, Qiuping Li, Jinfang Peng, and Mingxue Shen
- Subjects
U75VG rail ,flash−butt welding ,mechanical property ,tribological behavior ,damage mechanism ,Science - Abstract
Flash−butt welded rail is widely used in railway transportation; however, the welded joint is vulnerable after a long time of service, and its damage mechanism is controversial. Here, tensile and reciprocating friction tests were carried out to analyze the mechanical and tribological behaviors between the welded joint and the base metal of a U75VG rail. The results show that flash−butt welding promotes the pearlite to transform into ferrite, leading to a relatively low hardness value but high plasticity. In addition, the yielding and strength of the all−weld−metal specimen are 385 MPa and 1090 MPa, respectively, which are about 24.51% and 7.63% lower than that of the base metal specimen. It is worth noting that the elongation of the all−weld−metal specimen is 57.1% higher than that of the base metal specimen, and more dimples and tearing ridges can be detected on the fracture morphology of the all−weld−metal specimen, while the fracture morphology of the base metal specimen is filled with shallow dimples and cleavage planes. Moreover, the weld metal has a relatively higher COF (coefficient of friction), and its fluctuation amplitude is 1.25 times higher than that of the base metal, which is due to the rougher worn surface. Furthermore, the introduction of flash−butt welding changes the wear mechanism of the U75VG rail from adhesive wear and oxidation to fatigue wear and slight oxidation, and ultimately leads to more serious damage.
- Published
- 2023
- Full Text
- View/download PDF