6 results on '"Petrek M"'
Search Results
2. Variation in the IL1B, TNF and IL6 genes and individual susceptibility to prosthetic joint infection
- Author
-
Stahelova Anna, Mrazek Frantisek, Smizansky Matej, Petrek Martin, and Gallo Jiri
- Subjects
Immunologic diseases. Allergy ,RC581-607 - Abstract
Abstract Background Prosthetic joint infection (PJI) is an important failure mechanism of total joint arthroplasty (TJA). Here we examine whether the particular genetic variants can lead to increased susceptibility to PJI development. Results We conducted a genetic-association study to determine whether PJI could be associated with functional cytokine gene polymorphisms (CGP) influencing on innate immunity response. A case–control design was utilized and previously published criteria for PJI were included to distinguish between cases and control subjects with/without TJA. Six single nucleotide polymorphisms (SNPs) located in the genes for interleukin-1beta (SNP: IL1B-511, +3962), tumour necrosis factor alpha (TNF-308, -238) and interleukin-6 (IL6-174, nt565) were genotyped in 303 Caucasian (Czech) patients with TJA (89 with PJI / 214 without PJI), and 168 unrelated healthy Czech individuals without TJA. The results showed that carriers of the less common IL1B−511*T allele were overrepresented in the group of TJA patients with PJI (69%) in comparison with those that did not develop PJI (51%, p = 0.006, pcorr = 0.037) and with healthy controls (55%, p = 0.04, pcorr = N.S.). There was no significant difference in the distribution of the remaining five investigated CGPs and their haplotypes between groups. Conclusion A functional variant of the gene encoding for IL-1beta was preliminarily nominated as a genetic factor contributing to the susceptibility to PJI. Our results should be independently replicated; studies on the functional relevance of IL1B gene variants in PJI are also needed.
- Published
- 2012
- Full Text
- View/download PDF
3. Association of C1QB gene polymorphism with schizophrenia in Armenian population
- Author
-
Stahelova Anna, Gevorgyan Anaida, Boyajyan Anna, Arakelyan Arsen, Khoyetsyan Aren, Zakharyan Roksana, Mrazek Frantisek, and Petrek Martin
- Subjects
Internal medicine ,RC31-1245 ,Genetics ,QH426-470 - Abstract
Abstract Background Schizophrenia is a complex, multifactorial psychiatric disorder. Our previous findings indicated that altered functional activity of the complement system, a major mediator of the immune response, is implicated in the pathogenesis of schizophrenia. In order to explore whether these alterations are genetically determined or not, in the present study we evaluated the possible association of complement C1Q component gene variants with susceptibility to schizophrenia in Armenian population, focusing on four frequent single nucleotide polymorphisms (SNPs) of C1QA and C1QB genes. Methods In the present study four SNPs of the complement C1Q component genes (C1QA: rs292001, C1QB rs291982, rs631090, rs913243) were investigated in schizophrenia-affected and healthy subjects. Unrelated Caucasian individuals of Armenian nationality, 225 schizophrenic patients and the same number of age- and sex-matched healthy subjects, were genotyped. Genotyping was performed using polymerase chain reaction with sequence-specific primers (PCR-SSP) and quantitative real-time (qRT) PCR methods. Results While there was no association between C1QA rs292001, C1QB rs913243 and rs631090 genetic variants and schizophrenia, the C1QB rs291982*G minor allele was significantly overrepresented in schizophrenic patients (G allele frequency 58%) when compared to healthy subjects (46%, OR = 1.64, pcorr = 0.0008). Importantly, the susceptibility for schizophrenia was particularly associated with C1QB rs291982 GG genotype (OR = 2.5, pcorrected = 9.6E-5). Conclusions The results obtained suggest that C1QB gene may be considered as a relevant candidate gene for susceptibility to schizophrenia, and its rs291982*G minor allele might represent a risk factor for schizophrenia at least in Armenian population. Replication in other centers/populations is necessary to verify this conclusion.
- Published
- 2011
- Full Text
- View/download PDF
4. Involvement of microRNAs in physiological and pathological processes in the lung
- Author
-
Kriegova Eva, Petrek Martin, and Tomankova Tereza
- Subjects
Diseases of the respiratory system ,RC705-779 - Abstract
Abstract To date, at least 900 different microRNA (miRNA) genes have been discovered in the human genome. These short, single-stranded RNA molecules originate from larger precursor molecules that fold to produce hairpin structures, which are subsequently processed by ribonucleases Drosha/Pasha and Dicer to form mature miRNAs. MiRNAs play role in the posttranscriptional regulation of about one third of human genes, mainly via degradation of target mRNAs. Whereas the target mRNAs are often involved in the regulation of diverse physiological processes ranging from developmental timing to apoptosis, miRNAs have a strong potential to regulate fundamental biological processes also in the lung compartment. However, the knowledge of the role of miRNAs in physiological and pathological conditions in the lung is still limited. This review, therefore, summarizes current knowledge of the mechanism, function of miRNAs and their contribution to lung development and homeostasis. Besides the involvement of miRNAs in pulmonary physiological conditions, there is evidence that abnormal miRNA expression may lead to pathological processes and development of various pulmonary diseases. Next, the review describes current state-of-art on the miRNA expression profiles in smoking-related diseases including lung cancerogenesis, in immune system mediated pulmonary diseases and fibrotic processes in the lung. From the current research it is evident that miRNAs may play role in the posttranscriptional regulation of key genes in human pulmonary diseases. Further studies are, therefore, necessary to explore miRNA expression profiles and their association with target mRNAs in human pulmonary diseases.
- Published
- 2010
- Full Text
- View/download PDF
5. Variation in cytokine genes can contribute to severity of acetabular osteolysis and risk for revision in patients with ABG 1 total hip arthroplasty: a genetic association study
- Author
-
Mrazek Frantisek, Gallo Jiri, and Petrek Martin
- Subjects
Internal medicine ,RC31-1245 ,Genetics ,QH426-470 - Abstract
Abstract Background The differences in total hip arthroplasty (THA) survivorship may be influenced by individual susceptibility to periprosthetic osteolysis. This may be driven by functional polymorphisms in the genes for cytokines and cytokine receptors involved in the development of osteolysis in THA, thereby having an effect on the individual's phenotype. Methods We performed a study on 22 single-nucleotide polymorphisms (SNPs) for 11 cytokines and two cytokine receptor candidate genes for association with severity of acetabular osteolysis and risk to failure in THA. Samples from 205 unrelated Caucasian patients with cementless type THA (ABG 1) were investigated. Distribution of investigated SNP variants between the groups of mild and severe acetabular osteolysis was determined by univariate and multivariate analysis. Time-dependent output variables were analyzed by the Cox hazards model. Results Univariate analysis showed: 1) TNF-238*A allele was associated with severe osteolysis (odds ratio, OR = 6.59, p = 0.005, population attributable risk, PAR 5.2%); 2) carriers of the IL6-174*G allele were 2.5 times more prone to develop severe osteolysis than non-carriers (OR = 2.51, p = 0.007, PAR = 31.5%); 3) the carriage of IL2-330*G allele was associated with protection from severe osteolysis (OR = 0.55, p = 0.043). Based on logistic regression, the alleles TNF-238*A and IL6-174*G were independent predictors for the development of severe acetabular osteolysis. Carriers of TNF-238*A had increased cumulative hazard of THA failure according to Cox model (p = 0.024). In contrast, IL2-330*G allele predicted lower cumulative hazard of THA failure (p = 0.019). Conclusion Genetic variants of proinflammatory cytokines TNF-alpha and IL-6 confer susceptibility to severe OL. In this way, presence of the minor TNF allele could increase the cumulative risk of THA failure. Conversely, SNP in the IL2 gene may protect carriers from the above THA complications.
- Published
- 2009
- Full Text
- View/download PDF
6. CAVER: a new tool to explore routes from protein clefts, pockets and cavities
- Author
-
Koča Jaroslav, Košinová Pavlína, Banáš Pavel, Otyepka Michal, Petřek Martin, and Damborský Jiří
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background The main aim of this study was to develop and implement an algorithm for the rapid, accurate and automated identification of paths leading from buried protein clefts, pockets and cavities in dynamic and static protein structures to the outside solvent. Results The algorithm to perform a skeleton search was based on a reciprocal distance function grid that was developed and implemented for the CAVER program. The program identifies and visualizes routes from the interior of the protein to the bulk solvent. CAVER was primarily developed for proteins, but the algorithm is sufficiently robust to allow the analysis of any molecular system, including nucleic acids or inorganic material. Calculations can be performed using discrete structures from crystallographic analysis and NMR experiments as well as with trajectories from molecular dynamics simulations. The fully functional program is available as a stand-alone version and as plug-in for the molecular modeling program PyMol. Additionally, selected functions are accessible in an online version. Conclusion The algorithm developed automatically finds the path from a starting point located within the interior of a protein. The algorithm is sufficiently rapid and robust to enable routine analysis of molecular dynamics trajectories containing thousands of snapshots. The algorithm is based on reciprocal metrics and provides an easy method to find a centerline, i.e. the spine, of complicated objects such as a protein tunnel. It can also be applied to many other molecules. CAVER is freely available from the web site http://loschmidt.chemi.muni.cz/caver/.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.