16 results on '"Rituraj Purohit"'
Search Results
2. Theaflavin 3-gallate inhibits the main protease (Mpro) of SARS-CoV-2 and reduces its count in vitro
- Author
-
Mahima Chauhan, Vijay Kumar Bhardwaj, Asheesh Kumar, Vinod Kumar, Pawan Kumar, M. Ghalib Enayathullah, Jessie Thomas, Joel George, Bokara Kiran Kumar, Rituraj Purohit, Arun Kumar, and Sanjay Kumar
- Subjects
Medicine ,Science - Abstract
Abstract The main protease (Mpro) of SARS-CoV-2 has been recognized as an attractive drug target because of its central role in viral replication. Our previous preliminary molecular docking studies showed that theaflavin 3-gallate (a natural bioactive molecule derived from theaflavin and found in high abundance in black tea) exhibited better docking scores than repurposed drugs (Atazanavir, Darunavir, Lopinavir). In this study, conventional and steered MD-simulations analyses revealed stronger interactions of theaflavin 3-gallate with the active site residues of Mpro than theaflavin and a standard molecule GC373 (a known inhibitor of Mpro and novel broad-spectrum anti-viral agent). Theaflavin 3-gallate inhibited Mpro protein of SARS-CoV-2 with an IC50 value of 18.48 ± 1.29 μM. Treatment of SARS-CoV-2 (Indian/a3i clade/2020 isolate) with 200 μM of theaflavin 3-gallate in vitro using Vero cells and quantifying viral transcripts demonstrated reduction of viral count by 75% (viral particles reduced from Log106.7 to Log106.1). Overall, our findings suggest that theaflavin 3-gallate effectively targets the Mpro thus limiting the replication of the SARS-CoV-2 virus in vitro.
- Published
- 2022
- Full Text
- View/download PDF
3. A ricin-based peptide BRIP from Hordeum vulgare inhibits Mpro of SARS-CoV-2
- Author
-
Prakriti Kashyap, Vijay Kumar Bhardwaj, Mahima Chauhan, Varun Chauhan, Asheesh Kumar, Rituraj Purohit, Arun Kumar, and Sanjay Kumar
- Subjects
Medicine ,Science - Abstract
Abstract COVID-19 pandemic caused by SARS-CoV-2 led to the research aiming to find the inhibitors of this virus. Towards this world problem, an attempt was made to identify SARS-CoV-2 main protease (Mpro) inhibitory peptides from ricin domains. The ricin-based peptide from barley (BRIP) was able to inhibit Mpro in vitro with an IC50 of 0.52 nM. Its low and no cytotoxicity upto 50 µM suggested its therapeutic potential against SARS-CoV-2. The most favorable binding site on Mpro was identified by molecular docking and steered molecular dynamics (MD) simulations. The Mpro-BRIP interactions were further investigated by evaluating the trajectories for microsecond timescale MD simulations. The structural parameters of Mpro-BRIP complex were stable, and the presence of oppositely charged surfaces on the binding interface of BRIP and Mpro complex further contributed to the overall stability of the protein-peptide complex. Among the components of thermodynamic binding free energy, Van der Waals and electrostatic contributions were most favorable for complex formation. Our findings provide novel insight into the area of inhibitor development against COVID-19.
- Published
- 2022
- Full Text
- View/download PDF
4. Small Heat Shock Protein (sHsp22.98) from Trialeurodes vaporariorum Plays Important Role in Apple Scar Skin Viroid Transmission
- Author
-
Savita Chaudhary, Vijayanandraj Selvaraj, Preshika Awasthi, Swati Bhuria, Rituraj Purohit, Surender Kumar, and Vipin Hallan
- Subjects
apple scar skin viroid ,Trialeurodes vaporariorum ,small heat shock proteins (sHSPs) ,transient silencing ,tobacco rattle virus ,viroid transmission ,Microbiology ,QR1-502 - Abstract
Trialeurodes vaporariorum, commonly known as the greenhouse whitefly, severely infests important crops and serves as a vector for apple scar skin viroid (ASSVd). This vector-mediated transmission may cause the spread of infection to other herbaceous crops. For effective management of ASSVd, it is important to explore the whitefly’s proteins, which interact with ASSVd RNA and are thereby involved in its transmission. In this study, it was found that a small heat shock protein (sHsp) from T. vaporariorum, which is expressed under stress, binds to ASSVd RNA. The sHsp gene is 606 bp in length and encodes for 202 amino acids, with a molecular weight of 22.98 kDa and an isoelectric point of 8.95. Intermolecular interaction was confirmed through in silico analysis, using electrophoretic mobility shift assays (EMSAs) and northwestern assays. The sHsp22.98 protein was found to exist in both monomeric and dimeric forms, and both forms showed strong binding to ASSVd RNA. To investigate the role of sHsp22.98 during ASSVd infection, transient silencing of sHsp22.98 was conducted, using a tobacco rattle virus (TRV)-based virus-induced gene silencing system. The sHsp22.98-silenced whiteflies showed an approximate 50% decrease in ASSVd transmission. These results suggest that sHsp22.98 from T. vaporariorum is associated with viroid RNA and plays a significant role in transmission.
- Published
- 2023
- Full Text
- View/download PDF
5. In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors
- Author
-
Rahul Singh, Vijay Kumar Bhardwaj, Jatin Sharma, Rituraj Purohit, and Sanjay Kumar
- Subjects
SARS-CoV-2 ,COVID-19 ,NSP16 ,MM-PBSA ,Methyltransferase ,MD simulations ,Medicine - Abstract
Background and aim: A novel coronavirus, called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been found to cause COVID-19 in humans and some other mammals. The nonstructural protein 16 (NSP16) of SARS-CoV-2 plays a significant part in the replication of viruses and suppresses the ability of innate immune system to detect the virus. Therefore, inhibiting NSP16 can be a secure path towards identifying a potent medication against SARS-CoV-2. Tea (Camellia sinensis) polyphenols have been reported to exhibit potential treatment options against various viral diseases. Methods: We conducted molecular docking and structural dynamics studies with a set of 65 Tea bioactive compounds to illustrate their ability to inhibit NSP16 of SARS-CoV-2. Moreover, post-simulations end state thermodynamic free energy calculations were estimated to strengthen our results. Results and conclusion: Six bioactive tea molecules showed better docking scores than the standard molecule sinefungin. These results were further validated by MD simulations, where Theaflavin compound demonstrated lower binding free energy in comparison to the standard molecule sinefungin. The compound theaflavin could be considered as a novel lead compound for further evaluation by in-vitro and in-vivo studies.
- Published
- 2022
- Full Text
- View/download PDF
6. Mechanochemical Approach towards Multi-Functionalized 1,2,3-Triazoles and Anti-Seizure Drug Rufinamide Analogs Using Copper Beads
- Author
-
Dhananjay Bhattacherjee, Igor S. Kovalev, Dmitry S. Kopchuk, Matiur Rahman, Sougata Santra, Grigory V. Zyryanov, Pralay Das, Rituraj Purohit, Vladimir L. Rusinov, and Oleg N. Chupakhin
- Subjects
click chemistry ,mechanochemical synthesis ,1,2,3-triazole ,cycloaddition reaction ,Rufinamide synthesis ,solvent-free ,Organic chemistry ,QD241-441 - Abstract
Highly regiospecific, copper-salt-free and neat conditions have been demonstrated for the 1,3-dipolar azide-alkyne cycloaddition (AAC) reactions under mechanochemical conditions. A group of structurally challenging alkynes and heterocyclic derivatives was efficiently implemented to achieve highly functionalized 1,4-disubstituted-1,2,3-triazoles in good to excellent yield by using the Cu beads without generation of unwanted byproducts. Furthermore, the high-speed ball milling (HSBM) strategy has also been extended to the synthesis of the commercially available pharmaceutical agent, Rufinamide, an antiepileptic drug (AED) and its analogues. The same strategy was also applied for the synthesis of the Cl-derivative of Rufinamide. Analysis of the single crystal XRD data of the triazole was also performed for the final structural confirmation. The Cu beads are easily recoverable from the reaction mixture and used for the further reactions without any special treatment.
- Published
- 2022
- Full Text
- View/download PDF
7. Structural Perturbations due to Mutation (H1047R) in Phosphoinositide-3-kinase (PI3Kα) and Its Involvement in Oncogenesis: An in Silico Insight
- Author
-
Jatin Sharma, Vijay Bhardwaj, and Rituraj Purohit
- Subjects
Chemistry ,QD1-999 - Published
- 2019
- Full Text
- View/download PDF
8. Bioactive Molecules of Tea as Potential Inhibitors for RNA-Dependent RNA Polymerase of SARS-CoV-2
- Author
-
Vijay Kumar Bhardwaj, Rahul Singh, Jatin Sharma, Vidya Rajendran, Rituraj Purohit, and Sanjay Kumar
- Subjects
RNA-RdRp ,bioactive molecules ,SARS-CoV-2 ,tea ,COVID-19 ,Medicine (General) ,R5-920 - Abstract
The coronavirus disease (COVID-19), a worldwide pandemic, is caused by the severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2). At this moment in time, there are no specific therapeutics available to combat COVID-19. Drug repurposing and identification of naturally available bioactive molecules to target SARS-CoV-2 are among the key strategies to tackle the notorious virus. The enzyme RNA-dependent RNA polymerase (RdRp) performs a pivotal role in replicating the virus. RdRp is a prime target for Remdesivir and other nucleotides analog-based antiviral drugs. In this study, we showed three bioactive molecules from tea (epicatechin-3,5-di-O-gallate, epigallocatechin-3,5-di-O-gallate, and epigallocatechin-3,4-di-O-gallate) that showed better interaction with critical residues present at the catalytic center and the NTP entry channel of RdRp than antiviral drugs Remdesivir and Favipiravir. Our computational approach to identify these molecules included molecular docking studies, followed by robust molecular dynamics simulations. All the three molecules are readily available in tea and could be made accessible along with other medications to treat COVID-19 patients. However, these results require validation by further in vitro and in vivo studies.
- Published
- 2021
- Full Text
- View/download PDF
9. Hesperidin Interacts With CREB-BDNF Signaling Pathway to Suppress Pentylenetetrazole-Induced Convulsions in Zebrafish
- Author
-
Pallavi Sharma, Savita Kumari, Jatin Sharma, Rituraj Purohit, and Damanpreet Singh
- Subjects
brain-derived neurotrophic factor ,clonic-like seizures ,epilepsy ,c-fos ,flavanone glycoside ,in silico docking ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Hesperidin (3,5,7-trihydroxyflavanone 7-rhamnoglucoside) is a β-7-rutinoside of hesperetin (4′-methoxy-3′,5,7-trihydroxyflavanone), abundantly found in citrus fruits and known to interact with various cellular pathways to show a variety of pharmacological effects. The present study was envisaged to understand the anticonvulsant effect of hesperidin in a zebrafish model of pentylenetetrazole (PTZ)-induced convulsions, with the support of in silico docking. Healthy zebrafish larvae were preincubated with hesperidin (1, 5, and 10 µM) for 1 h, before PTZ exposure. Hesperidin treatment significantly increased the seizure latency and minimized PTZ-induced hyperactive responses. A significant reduction in c-fos expression further supported the suppression of neuronal excitation following hesperidin incubation in the larvae exposed to PTZ. The treatment also modulated larval bdnf expression and reduced the expression of il-10. The results of in vivo studies were further supported by in silico docking analysis, which showed the affinity of hesperidin for the N-methyl-d-aspartate receptor, the gamma-aminobutyric acid receptor, Interleukin 10 and the TrkB receptor of brain-derived neurotrophic factor. The results concluded that hesperidin suppresses PTZ-mediated seizure in zebrafish larvae through interaction with the central CREB–BDNF pathway.
- Published
- 2021
- Full Text
- View/download PDF
10. Molecular dynamic (MD) studies on Gln233Arg (rs1137101) polymorphism of leptin receptor gene and associated variations in the anthropometric and metabolic profiles of Saudi women.
- Author
-
Maha Daghestani, Rituraj Purohit, Mazin Daghestani, Mamoon Daghistani, and Arjumand Warsy
- Subjects
Medicine ,Science - Abstract
The Gln233Arg (A>G; rs1137101) polymorphism of the leptin receptor gene (LEPR) has been investigated extensively and is reported to be associated with different metabolic states. In this investigation, we aimed to study the frequency of Gln233Arg genotypes and alleles in a group of Saudi women stratified by their body mass index (BMI), to correlate the LEPR genotypes with variations in anthropometric, lipid and hormonal parameters and to investigate conformational and structural variations in the mutant LEPR using molecular dynamic (MD) investigations. The study group included 122 Saudi women (normal weight = 60; obese = 62) attending the clinics for a routine checkup. Anthropometric data: height, weight, waist and hip circumference were recorded and fasting serum sample was used to estimate glucose, lipids, ghrelin, leptin and insulin. BMI, W/H ratio, and HOMA-IR values were calculated. Whole blood sample was used to extract DNA; exon 6 of the LEPR gene was amplified by PCR and sequencing was conducted on an ABI 3100 Avant Genetic Analyser. Molecular Dynamic Simulation studies were carried out using different softwares. The results showed the presence of all three genotypes of Gln233Arg in Saudi women, but the frequencies were significantly different when compared to reports from some populations. No differences were seen in the genotype and allele frequencies between the normal weight and obese women. Stratification by the genotypes showed significantly higher BMI, waist and hip circumference, leptin, insulin, fasting glucose and HOMA-IR and lower ghrelin levels in obese women carrying the GG genotype. Even in the normal weight group, individuals with GG genotype had higher BMI, waist and hip circumference and significantly lower ghrelin levels. The MD studies showed a significant effect of the Gln/Arg substitution on the conformation, flexibility, root-mean-square fluctuation (RMSF), radius of gyration (Rg) values, solvent-accessible surface area (SASA) and number of inter- and intra-molecular H-bonds. The results suggest that the structural changes brought about by the mutation, influence the signaling pathways by some unknown mechanism, which may be contributing to the abnormalities seen in the individuals carrying the G allele of rs1137101.
- Published
- 2019
- Full Text
- View/download PDF
11. Use of long term molecular dynamics simulation in predicting cancer associated SNPs.
- Author
-
Ambuj Kumar and Rituraj Purohit
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Computational prediction of cancer associated SNPs from the large pool of SNP dataset is now being used as a tool for detecting the probable oncogenes, which are further examined in the wet lab experiments. The lack in prediction accuracy has been a major hurdle in relying on the computational results obtained by implementing multiple tools, platforms and algorithms for cancer associated SNP prediction. Our result obtained from the initial computational compilations suggests the strong chance of Aurora-A G325W mutation (rs11539196) to cause hepatocellular carcinoma. The implementation of molecular dynamics simulation (MDS) approaches has significantly aided in raising the prediction accuracy of these results, but measuring the difference in the convergence time of mutant protein structures has been a challenging task while setting the simulation timescale. The convergence time of most of the protein structures may vary from 10 ns to 100 ns or more, depending upon its size. Thus, in this work we have implemented 200 ns of MDS to aid the final results obtained from computational SNP prediction technique. The MDS results have significantly explained the atomic alteration related with the mutant protein and are useful in elaborating the change in structural conformations coupled with the computationally predicted cancer associated mutation. With further advancements in the computational techniques, it will become much easier to predict such mutations with higher accuracy level.
- Published
- 2014
- Full Text
- View/download PDF
12. Single Nucleotide Polymorphisms in MicroRNA Binding Sites: Implications in Colorectal Cancer
- Author
-
Panchalee Bhaumik, Chandrasekhar Gopalakrishnan, Balu Kamaraj, and Rituraj Purohit
- Subjects
Technology ,Medicine ,Science - Abstract
Cancer is a complex genetic disorder, characterised by uncontrolled cell proliferation and caused by altered expression of oncogenes and tumour suppressor genes. When cell proliferation pertains to colon, it is called colorectal cancer. Most of colorectal cancer causing genes are potential targets for the miRNA (microRNA) that bind to 3′UTR (untranslated regions) of mRNA and inhibit translation. Mutations occurring in miRNA binding regions can alter the miRNA, mRNA combination, and can alter gene expression drastically. We hypothesized that 3′UTR mutation in miRNA binding site could alter the miRNA, mRNA interaction, thereby altering gene expression. Altered gene expression activity could promote tumorigenesis in colon. Therefore, we formulated a systematic in silico procedure that integrates data from various databases, followed rigorous selection criteria, and identified mutations that might alter the expression levels of cancer causing genes. Further we performed expression analysis to shed light on the potential tissues that might be affected by mutation, enrichment analysis to find the metabolic functions of the gene, and network analysis to highlight the important interactions of cancer causing genes with other genes to provide insight that complex network will be disturbed upon mutation. We provide in silico evidence for the effect of these mutations in colorectal cancer.
- Published
- 2014
- Full Text
- View/download PDF
13. Molecular dynamic simulation reveals damaging impact of RAC1 F28L mutation in the switch I region.
- Author
-
Ambuj Kumar, Vidya Rajendran, Rao Sethumadhavan, and Rituraj Purohit
- Subjects
Medicine ,Science - Abstract
Ras-related C3 botulinum toxin substrate 1 (RAC1) is a plasma membrane-associated small GTPase which cycles between the active GTP-bound and inactive GDP-bound states. There is wide range of evidences indicating its active participation in inducing cancer-associated phenotypes. RAC1 F28L mutation (RAC(F28L)) is a fast recycling mutation which has been implicated in several cancer associated cases. In this work we have performed molecular docking and molecular dynamics simulation (~0.3 μs) to investigate the conformational changes occurring in the mutant protein. The RMSD, RMSF and NHbonds results strongly suggested that the loss of native conformation in the Switch I region in RAC1 mutant protein could be the reason behind its oncogenic transformation. The overall results suggested that the mutant protein attained compact conformation as compared to the native. The major impact of mutation was observed in the Switch I region which might be the crucial reason behind the loss of interaction between the guanine ring and F28 residue.
- Published
- 2013
- Full Text
- View/download PDF
14. Evolutionary reconstruction and population genetics analysis of aurora kinases.
- Author
-
Balu Kamaraj, Ambuj Kumar, and Rituraj Purohit
- Subjects
Medicine ,Science - Abstract
BACKGROUND: Aurora kinases belong to the highly conserved kinase family and play a vital role in cell cycle regulation. The structure and function of these kinases are inter-related and sometimes they also act as substitutes in case of knockdown of other aurora kinases. METHOD: In this work we carried out the evolutionary reconstruction and population genetic studies of aurora kinase proteins. Substitution saturation test, CAI (Codon adaptation index), gene expression and RSCU (Relative synonymous codon usage) values were computed for all the three aurora kinases. Linear regression method was used to check the dependency of gene expression on their CAI values. RESULTS: The results suggested that aurora-B and aurora-C has shown convergence in their evolutionary pathway. Moreover, the aurora-A I57V mutation showed high penetrance in human population and exist at very high frequency (84.4%) when compared to the native residue (15.6%). The mutation showed notable range of functional gain and seemed to be promising for the evolution of aurora-A function. Mutant allele might also become a challenging prospect for understanding the pattern of evolution followed by cell cycle kinases. CONCLUSION: The overall result suggested that the aurora-A is currently under the evolutionary transition and to determine the functional significance of the mutation further investigation are required.
- Published
- 2013
- Full Text
- View/download PDF
15. Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH) domain.
- Author
-
Ambuj Kumar and Rituraj Purohit
- Subjects
Medicine ,Science - Abstract
BACKGROUND: AKT1 (v-akt murine thymoma viral oncogene homologue 1) kinase is one of the most frequently activated proliferated and survival pathway of cancer. Recently it has been shown that E17K mutation in the Pleckstrin Homology (PH) domain of AKT1 protein leads to cancer by amplifying the phosphorylation and membrane localization of protein. The mutant has shown resistance to AKT1/2 inhibitor VIII drug molecule. In this study we have demonstrated the detailed structural and molecular consequences associated with the activity regulation of mutant protein. METHODS: The docking score exhibited significant loss in the interaction affinity to AKT1/2 inhibitor VIII drug molecule. Furthermore, the molecular dynamics simulation studies presented an evidence of rapid conformational drift observed in mutant structure. RESULTS: There was no stability loss in mutant as compared to native structure and the major cation-π interactions were also shown to be retained. Moreover, the active residues involved in membrane localization of protein exhibited significant rise in NHbonds formation in mutant. The rise in NHbond formation in active residues accounts for the 4-fold increase in the membrane localization potential of protein. CONCLUSION: The overall result suggested that, although the mutation did not induce any stability loss in structure, the associated pathological consequences might have occurred due to the rapid conformational drifts observed in the mutant AKT1 PH domain. GENERAL SIGNIFICANCE: The methodology implemented and the results obtained in this work will facilitate in determining the core molecular mechanisms of cancer-associated mutations and in designing their potential drug inhibitors.
- Published
- 2013
- Full Text
- View/download PDF
16. AKT Kinase Pathway: A Leading Target in Cancer Research
- Author
-
Ambuj Kumar, Vidya Rajendran, Rao Sethumadhavan, and Rituraj Purohit
- Subjects
Technology ,Medicine ,Science - Abstract
AKT1, a serine/threonine-protein kinase also known as AKT kinase, is involved in the regulation of various signalling downstream pathways including metabolism, cell proliferation, survival, growth, and angiogenesis. The AKT kinases pathway stands among the most important components of cell proliferation mechanism. Several approaches have been implemented to design an efficient drug molecule to target AKT kinases, although the promising results have not been confirmed. In this paper we have documented the detailed molecular insight of AKT kinase protein and proposed a probable doxorubicin based approach in inhibiting miR-21 based cancer cell proliferation. Moreover, the inhibition of miR-21 activation by raising the FOXO3A concentration seems promising in reducing miR-21 mediated cancer activation in cell. Furthermore, the use of next generation sequencing and computational drug design approaches will greatly assist in designing a potent drug molecule against the associated cancer cases.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.