Yuan Kai, Sun Jinbo, Liu Jixin, Dong Minghao, Liu Peng, Dai Jianping, Bai Lijun, Qin Wei, Chen Peng, Zhao Baixiao, Gong Qiyong, Tian Jie, and Liu Yijun
Abstract Background Functional acupoint specificity is crucial to the clinical efficacy of acupuncture treatment, such as pain relief. Whether acupuncture needling at a peripheral acupoint produces distinct patterns of brain responses remains controversial. Results This fMRI study employed the complex network analysis (CNA) to test the hypothesis that acupuncture stimulation at an acupoint correspondingly induced activity changes in one or more intrinsic or resting-state brain networks. Built upon the sustained effect of acupuncture and its time-varying characteristics, we constructed a dynamic encoding system with the hub anchored at the posterior cingulate cortex and precuneus (PCC/pC). We found that needling at two visual acupoints (GB37 and BL60) and a non-visual acupoint (KI8) induced a spatially converging brain response, which overlapped at the PCC/pC. We also found distinct neural modulations during and after acupoint stimulation. During this period, the PCC/pC interacted with a visual resting-state network in different patterns. Furthermore, there was a delayed functional correspondence between the intrinsic visual network and manipulation over the visual acupoints (i.e., GB37 or BL60), but not the non-visual acupoint (KI8) via the PCC/pC, implicating a specific temporal-spatial encoding/decoding mechanism underlying the post-effect of acupuncture. Conclusions This study provided an integrated view exploring the functional specificity of acupuncture in which both the needling sensation and the following neural cascades may contribute to the overall effect of acupuncture through dynamic reconfiguration of complex neural networks. fMRI, acupoints, posterior cingulate cortex, precuneus, temporal-spatial encoding, resting-state networks