1. L-DOPA neurotoxicity is mediated by up-regulation of DMT1-IRE expression.
- Author
-
Fang Du, Zhong-ming Qian, Li Zhu, Xiao Mei Wu, Wing-ho Yung, Ting-yuk Tsim, and Ya Ke
- Subjects
Medicine ,Science - Abstract
BACKGROUND: The mechanisms underlying neurotoxicity caused by L-DOPA are not yet completely known. Based on recent findings, we speculated that the increased expression of divalent metal transporter 1 without iron-response element (DMT1-IRE) induced by L-DOPA might play a critical role in the development of L-DOPA neurotoxicity. To test this hypothesis, we investigated the effects of astrocyte-conditioned medium (ACM) and siRNA DMT-IRE on L-DOPA neurotoxicity in cortical neurons. METHODS AND FINDINGS: We demonstrated that neurons treated with L-DOPA have a significant dose-dependent decrease in neuronal viability (MTT Assay) and increase in iron content (using a graphite furnace atomic absorption spectrophotometer), DMT1-IRE expression (Western blot analysis) and ferrous iron (55Fe(II)) uptake. Neurons incubated in ACM with or without L-DOPA had no significant differences in their morphology, Hoechst-33342 staining or viability. Also, ACM significantly inhibited the effects of L-DOPA on neuronal iron content as well as DMT1-IRE expression. In addition, we demonstrated that infection of neurons with siRNA DMT-IRE led to a significant decrease in DMT1-IRE expression as well as L-DOPA neurotoxicity. CONCLUSION: The up-regulation of DMT1-IRE and the increase in DMT1-IRE-mediated iron influx play a key role in L-DOPA neurotoxicity in cortical neurons.
- Published
- 2009
- Full Text
- View/download PDF