1. Effect of temperature, salinity and nutrients on the growth and toxin content of the dinoflagellate Gymnodinium catenatum from the southwestern Mediterranean.
- Author
-
Aboualaalaa H, Rijal Leblad B, Elkbiach ML, Ibghi M, Boutaib R, Maamour N, Savar V, Masseret E, Abadie E, Rolland JL, Amzil Z, and Laabir M
- Subjects
- Mediterranean Sea, Saxitoxin analysis, Morocco, Nutrients analysis, Dinoflagellida, Salinity, Marine Toxins analysis, Temperature
- Abstract
The dinoflagellate Gymnodinium catenatum is considered the primary cause of recurrent paralytic shellfish toxins (PSTs) in shellfish on the Moroccan Mediterranean coasts. The impacts of key environmental factors on the growth, cell yield, cell size and PST content of G. catenatum were determined. Results indicated that increasing salinity from 32 to 39 and nitrate concentrations from 441 μM to 1764 μM did not significantly (ANOVA, P-value >0.63) modify the growth rate of the studied species. Gymnodinium catenatum exhibited the highest growth rate at 24 °C. Cells arrested their division at 15 °C and at ammonium concentration above 441 μM, suggesting that this nitrogen form is toxic for G. catenatum. Furthermore, G. catenatum was unable to assimilate urea as a nitrogen source. In G. catenatum cells, eight analogues of saxitoxin were detected, belonging to the N-sulfocarbamoyl (C1-4, B1 and B2) and decarbamoyl (dc-GTX2/3) toxins. C-toxins contributed 92 % to 98 % of the molar composition of the PSTs. During the exponential growth, C2 tended to dominate, while C3 prevailed during the stationary phase. Toxin content per cell (ranging from 5.5 pg STXeq.cell
-1 to 22.4 pg STXeq.cell-1 ) increased during the stationary growth phase. Cell toxin content increased with the concentrations of nitrate, ranging from 12.1 pg STXeq.cell-1 at 441 μM to 22.4 pg STXeq.cell-1 at 1764 μM during the stationary growth phase. The toxin content of G. catenatum showed the highest values measured at the highest tested temperatures, especially during the stationary phase, where toxicity reached 17.8 pg STXeq.cell-1 and 16.4 pg STXeq.cell-1 at 24 °C and 29 °C, respectively. The results can help understand the fluctuations in the growth and PST content of G. catenatum in its habitat in response to changing environmental variables in the Mediterranean Sea when exposed to increases in warming pressure and eutrophication., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)- Published
- 2024
- Full Text
- View/download PDF