1. Feedback control of the Arabidopsis hypersensitive response.
- Author
-
Zhang C, Gutsche AT, and Shapiro AD
- Subjects
- Apoptosis, Arabidopsis cytology, Arabidopsis metabolism, Epistasis, Genetic, Feedback, Genes, Plant, Hydrogen Peroxide metabolism, Mutation, Phenotype, Plant Diseases genetics, Plant Diseases microbiology, Pseudomonas syringae pathogenicity, Salicylic Acid metabolism, Arabidopsis genetics, Arabidopsis microbiology
- Abstract
The plant hypersensitive response (HR) to avirulent bacterial pathogens results from programmed cell death of plant cells in the infected region. Ion leakage and changes in signaling components associated with HR progression were measured. These studies compared Arabidopsis mutants affecting feedback loops with wild-type plants, with timepoints taken hourly. In response to Pseudomonas syringae pv. tomato DC3000 x avrB, npr1-2 mutant plants showed increased ion leakage relative to wild-type plants. Hydrogen peroxide accumulation was similar to that in wild type, but salicylic acid accumulation was reduced at some timepoints. With DC3000 x avrRpt2, similar trends were seen. In response to DC3000 x avrB, ndr1-1 mutant plants showed more ion leakage than wild-type or npr1-2 plants. Hydrogen peroxide accumulation was delayed by approximately 1 h and reached half the level seen with wild-type plants. Salicylic acid accumulation was similar to npr1-2 mutant plants. With DC3000 x avrRpt2, ndr1-1 mutant plants showed no ion leakage, no hydrogen peroxide accumulation, and minimal salicylic acid accumulation. Results with a ndr1-1 and npr1-2 double mutant were similar to ndr1-1. A model consistent with these data is presented, in which one positive and two negative regulatory circuits control HR progression. Understanding this circuitry will facilitate HR manipulation for enhanced disease resistance.
- Published
- 2004
- Full Text
- View/download PDF