1. Adaptive subarray coherence based post-filter using array gain in medical ultrasound imaging.
- Author
-
Eslami L and Mohammadzadeh Asl B
- Subjects
- Algorithms, Humans, Image Processing, Computer-Assisted methods, Phantoms, Imaging, Ultrasonography methods, Cysts, Signal Processing, Computer-Assisted
- Abstract
This paper presents an adaptive subarray coherence-based post-filter (ASCBP) applied to the eigenspace-based forward-backward minimum variance (ESB-FBMV) beamformer to simultaneously improve image quality and beamformer robustness. Additionally, the ASCBP can separate close targets. The ASCBP uses an adaptive noise power weight based on the concept of the beamformer's array gain (AG) to suppress the noise adaptively and achieve improved images. Moreover, a square neighborhood average was applied to the ASCBP in order to provide more smoothed square neighborhood ASCBP (SN-ASCBP) values and improve the speckle quality. Through simulations of point phantoms and cyst phantoms and experimental validation, the performance of the proposed methods was compared to that of delay-and-sum (DAS), MV-based beamformers, and subarray coherence-based post-filter (SCBP). The simulated results demonstrated that the ASCBP method improved the full width at half maximum (FWHM) by 57 % and the coherent interference suppression power (CISP) by 52 dB compared to the SCBP post-filter. Considering the experimental results, the SN-ASCBP method presented the best enhancement in terms of generalized contrast to noise ratio (gCNR) and contrast ratio (CR) while the ASCBP showed the best improvement in FWHM among other methods. Furthermore, the proposed methods presented a striking performance in low SNRs. The results of evaluating the different methods under aberration and sound speed error illustrated the better robustness of the proposed methods in comparison with others., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF