1. Soil geochemistry - and not topography - as a major driver of carbon allocation, stocks, and dynamics in forests and soils of African tropical montane ecosystems.
- Author
-
Bukombe B, Bauters M, Boeckx P, Cizungu LN, Cooper M, Fiener P, Kidinda LK, Makelele I, Muhindo DI, Rewald B, Verheyen K, and Doetterl S
- Subjects
- Carbon, Tropical Climate, Forests, Biomass, Soil chemistry, Ecosystem
- Abstract
The lack of field-based data in the tropics limits our mechanistic understanding of the drivers of net primary productivity (NPP) and allocation. Specifically, the role of local edaphic factors - such as soil parent material and topography controlling soil fertility as well as water and nutrient fluxes - remains unclear and introduces substantial uncertainty in understanding net ecosystem productivity and carbon (C) stocks. Using a combination of vegetation growth monitoring and soil geochemical properties, we found that soil fertility parameters reflecting the local parent material are the main drivers of NPP and C allocation patterns in tropical montane forests, resulting in significant differences in below- to aboveground biomass components across geochemical (soil) regions. Topography did not constrain the variability in C allocation and NPP. Soil organic C stocks showed no relation to C input in tropical forests. Instead, plant C input seemingly exceeded the maximum potential of these soils to stabilize C. We conclude that, even after many millennia of weathering and the presence of deeply developed soils, above- and belowground C allocation in tropical forests, as well as soil C stocks, vary substantially due to the geochemical properties that soils inherit from parent material., (© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.)
- Published
- 2022
- Full Text
- View/download PDF