56 results on '"Bonnel J"'
Search Results
2. Noise pollution causes parental stress on marine invertebrates, the Giant scallop example.
- Author
-
Gigot M, Tremblay R, Bonnel J, Mathias D, Meziane T, Chauvaud L, and Olivier F
- Subjects
- Animals, Pecten, Aquatic Organisms, Reproduction, Stress, Physiological, Noise adverse effects, Larva
- Abstract
In marine invertebrates, abiotic stresses on adults can act directly on gametes quality, which impacts phenotype and development success of the offspring. Human activities introduce noise pollution in the marine environment but still few studies on invertebrates have considered the impacts on adult or larval stages separately, and to our knowledge, never investigated the cross-generational effects of anthropogenic noise. This article explores parental effects of pile driving noise associated with the building phase of offshore wind turbines on a coastal invertebrate, Pecten maximus (L.). Adults were exposed to increasing levels of sound during gametogenesis, then their offspring were also exposed. The results highlight that anthropogenic noise experienced by the parents reduces their reproductive investment and modify larval response in similar conditions. Also, larvae from exposed adults grew 6-fold faster and metamorphosed 5-fold faster, which could be an amplified adaptive strategy to reduce the pelagic phase in a stressful environment., Competing Interests: Declaration of competing interest The authors declare that they have no financial interests or personal relationship that could have influence this work., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. On the equivalence of scalar-pressure and vector-based acoustic dosage measures as derived from time-limited signal waveformsa).
- Author
-
Dahl PH, Bonnel J, and Dall'Osto DR
- Abstract
The dynamic (acoustic pressure) and kinematic (acoustic acceleration and velocity) properties of time-limited signals are studied in terms of acoustic dose metrics as might be used to assess the impact of underwater noise on marine life. The work is relevant for the study of anthropogenic transient acoustic signals, such as airguns, pile driving, and underwater explosive sources, as well as more generic transient signals from sonar systems. Dose metrics are first derived from numerical simulations of sound propagation from a seismic airgun source as specified in a Joint Industry Programme benchmark problem. Similar analyses are carried out based on at-sea acoustic measurements on the continental shelf, made with a vector sensor positioned 1.45 m off the seabed. These measurements are on transient time-limited signals from multiple underwater explosive sources at differing ranges, and from a towed, sonar source. The study demonstrates, both numerically and experimentally, that under many realistic scenarios, kinematic based acoustic dosage metrics within the water column can be evaluated using acoustic pressure measurements., (© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).)
- Published
- 2024
- Full Text
- View/download PDF
4. Trans-dimensional inversion for seafloor properties for three mud depocenters on the New England shelf under dynamical oceanographic conditionsa).
- Author
-
Bonnel J, Dosso SE, Hodgkiss WS, Ballard MS, Garcia DD, Lee KM, McNeese AR, and Wilson PS
- Abstract
This paper presents inversion results for three datasets collected on three spatially separated mud depocenters (hereafter called mud ponds) during the 2022 Seabed Characterization Experiment (SBCEX). The data considered here represent modal time-frequency (TF) dispersion as estimated from a single hydrophone. Inversion is performed using a trans-dimensional (trans-D) Bayesian inference method that jointly estimates water-column and seabed properties along with associated uncertainties. This enables successful estimation of the seafloor properties, consistent with in situ acoustic core measurements, even when the water column is dynamical and mostly unknown. A quantitative analysis is performed to (1) compare results with previous modal TF trans-D studies for one mud pond but under different oceanographic condition, and (2) inter-compare the new SBCEX22 results for the three mud ponds. Overall, the estimated mud geoacoustic properties show no significant temporal variability. Further, no significant spatial variability is found between two of the mud ponds while the estimated geoacoustic properties of the third are different. Two hypotheses, considered to be equally likely, are explored to explain this apparent spatial variability: it may be the result of actual differences in the mud properties, or the mud properties may be similar but the inversion results are driven by difference in data information content., (© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).)
- Published
- 2024
- Full Text
- View/download PDF
5. Pile driving and drilling underwater sounds impact the metamorphosis dynamics of Pecten maximus (L., 1758) larvae.
- Author
-
Gigot M, Olivier F, Cervello G, Tremblay R, Mathias D, Meziane T, Chauvaud L, and Bonnel J
- Subjects
- Animals, Larva, Sound, Noise, Metamorphosis, Biological, Pecten
- Abstract
One of the biggest challenges of the 21st century is to reduce carbon emissions and offshore wind turbines seem to be an efficient solution. However, during the installation phase, high levels of noise are emitted whose impacts remain not well known, particularly on benthic marine invertebrates displaying a bentho-planktonic life-cycle. For one century, larval settlement and subsequent recruitment has been considered as a key topic in ecology as it determines largely population renewal. Whereas several recent studies have shown that trophic pelagic but also natural soundscape cues could trigger bivalve settlement, the role of anthropogenic noise remains poorly documented. Therefore, we conducted experiments to assess potential interacting effects of diet and pile driving or drilling sounds on the great scallop (Pecten maximus) larval settlement. We demonstrate here that pile driving noise stimulates both growth and metamorphosis as well as it increases the total lipid content of competent larvae. Conversely, drilling noise reduces both survival and metamorphosis rates. For the first time, we provide evidence of noise impacts associated to MREs installation on P. maximus larvae and discuss about potential consequences on their recruitment., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Laurent Chauvaud reports financial support was provided by Iberdrola SA., (Copyright © 2023. Published by Elsevier Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
6. Approximation of modal wavenumbers and group speeds in an oceanic waveguide using a neural network.
- Author
-
Varon A, Mars J, and Bonnel J
- Abstract
Underwater acoustic propagation is influenced not only by the property of the water column, but also by the seabed property. Modeling this propagation using normal mode simulation can be computationally intensive, especially for wideband signals. To address this challenge, a Deep Neural Network is used to predict modal horizontal wavenumbers and group velocities. Predicted wavenumbers are then used to compute modal depth functions and transmission losses, reducing computational cost without significant loss in accuracy. This is illustrated on a simulated Shallow Water 2006 inversion scenario., (© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).)
- Published
- 2023
- Full Text
- View/download PDF
7. Joint trans-dimensional inversion for water-column sound speed and seabed geoacoustic models.
- Author
-
Dosso SE and Bonnel J
- Subjects
- Bayes Theorem, Time Factors, Motion, Signal Processing, Computer-Assisted, Sound Spectrography, Water, Geologic Sediments
- Abstract
This letter considers joint estimation of the water-column sound-speed profile (SSP) and seabed geoacoustic model through Bayesian inversion of ocean-acoustic data. The inversion is formulated in terms of separate trans-dimensional models for the water column (as an unknown number of nodes of a piecewise-continuous SSP) and seabed (as an unknown number of uniform layers) to intrinsically parameterize each according to the information content of the data. The inversion estimates marginal posterior probability profiles, quantifying the resolution of water-column and seabed structure. To validate the proposed method, modal-dispersion data from the New England Mud Patch, collected using hand-deployable systems, are considered., (© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).)
- Published
- 2023
- Full Text
- View/download PDF
8. Broadband properties of potential and kinetic energies in an oceanic waveguide.
- Author
-
Flamant J and Bonnel J
- Abstract
The energetic properties of an acoustic field can be quantified through the potential (Ep) and kinetic (Ek) energies. This article derives broadband properties of Ep and Ek in an oceanic waveguide, with restriction to a far-field context under which the acoustic field can be described by a set of propagating trapped modes. Using a set of reasonable assumptions, it is analytically demonstrated that, when integrated over a wide enough frequency-band, Ep = Ek everywhere in the waveguide, except at four specific depths: z = 0 (sea surface), z = D (seafloor), z = zs (source depth), and z=D-zs (mirrored source depth). Several realistic simulations are also presented to show the relevance of the analytical derivation. It is notably illustrated that, when integrated over third-octave bands, Ep≃Ek within 1 dB everywhere in the far-field waveguide, except in the first few meters of the water column (on a dB scale, no significant difference is found between Ep and Ek for z = D, z = zs, and z=D-zs)., (© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).)
- Published
- 2023
- Full Text
- View/download PDF
9. Machine-learning-based simultaneous detection and ranging of impulsive baleen whale vocalizations using a single hydrophone.
- Author
-
Goldwater M, Zitterbart DP, Wright D, and Bonnel J
- Subjects
- Humans, Animals, Algorithms, Machine Learning, Water, Whales, Acoustics
- Abstract
The low-frequency impulsive gunshot vocalizations of baleen whales exhibit dispersive propagation in shallow-water channels which is well-modeled by normal mode theory. Typically, underwater acoustic source range estimation requires multiple time-synchronized hydrophone arrays which can be difficult and expensive to achieve. However, single-hydrophone modal dispersion has been used to range baleen whale vocalizations and estimate shallow-water geoacoustic properties. Although convenient when compared to sensor arrays, these algorithms require preliminary signal detection and human labor to estimate the modal dispersion. In this paper, we apply a temporal convolutional network (TCN) to spectrograms from single-hydrophone acoustic data for simultaneous gunshot detection and ranging. The TCN learns ranging and detection jointly using gunshots simulated across multiple environments and ranges along with experimental noise. The synthetic data are informed by only the water column depth, sound speed, and density of the experimental environment, while other parameters span empirically observed bounds. The method is experimentally verified on North Pacific right whale gunshot data collected in the Bering Sea. To do so, 50 dispersive gunshots were manually ranged using the state-of-the-art time-warping inversion method. The TCN detected these gunshots among 50 noise-only examples with high precision and estimated ranges which closely matched those of the physics-based approach.
- Published
- 2023
- Full Text
- View/download PDF
10. Three-dimensional anthropogenic underwater noise modeling in an Arctic fjord for acoustic risk assessment.
- Author
-
Richard G, Mathias D, Collin J, Chauvaud L, and Bonnel J
- Subjects
- Animals, Acoustics, Arctic Regions, Ships, Noise, Estuaries
- Abstract
Sea-ice covering is drastically declining in the Arctic, opening new maritime routes and thus introducing underwater noise pollution in nearly pristine acoustic environments. Evaluating underwater noise pollution requires good acoustic propagation modeling to predict sound exposure levels. However, underwater noise modeling for acoustic risk assessments has often been carried out using simplistic propagation models, which approximate a 3D propagation in several planes (Nx2D), instead of using full 3D propagation models. However, Nx2D propagation models are impractical for winding geography and steep bathymetry as found in Arctic fjords. The purpose of this study is to estimate disturbance and masking effects on Arctic animal species from shipping noises, modeled through a traditional Nx2D BELLHOP model and a full 3D BELLHOP model. Classical Nx2D propagation modeling largely underestimates the anthropogenic noise footprint in Arctic fjords compared to using a full 3D propagation model., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Laurent Chauvaud reports financial support was provided by European Union., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
11. Tank acoustics substantially distort broadband sounds produced by marine crustaceans.
- Author
-
Jézéquel Y, Bonnel J, Aoki N, and Mooney TA
- Subjects
- Sound, Acoustics
- Abstract
Marine crustaceans produce broadband sounds that have been mostly characterized in tanks. While tank physical impacts on such signals are documented in the acoustic community, they are overlooked in the bioacoustic literature with limited empirical comparisons. Here, we compared broadband sounds produced at 1 m from spiny lobsters (Panulirus argus) in both tank and in situ conditions. We found significant differences in all sound features (temporal, power, and spectral) between tank and in situ recordings, highlighting that broadband sounds, such as those produced by marine crustaceans, cannot be accurately characterized in tanks. We then explained the three main physical impacts that distort broadband sounds in tanks, respectively known as resonant frequencies, sound reverberation, and low frequency attenuation. Tank resonant frequencies strongly distort the spectral shape of broadband sounds. In the high frequency band (above the tank minimum resonant frequency), reverberation increases sound duration. In the low frequency band (below the tank minimum resonant frequency), low frequencies are highly attenuated due to their longer wavelength compared to the tank size and tank wall boundary conditions (zero pressure) that prevent them from being accurately measured. Taken together, these results highlight the importance of understanding tank physical impacts when characterizing broadband crustacean sounds.
- Published
- 2022
- Full Text
- View/download PDF
12. Acoustic scaling in the European spiny lobster (Palinurus elephas).
- Author
-
Jézéquel Y, Bonnel J, Eliès P, and Chauvaud L
- Subjects
- Animals, Sound, Acoustics, Body Size, Palinuridae
- Abstract
Sound is an important cue for arthropods. In insects, sound features and sound-producing apparatus are tightly correlated to enhance signal emission in larger individuals. In contrast, acoustic scaling in marine arthropods is poorly described even if they possess similar sound-producing apparatus. Here, the acoustic scaling of the European spiny lobster is analyzed by recording sounds in situ at 1 m from a wide range of body sizes. The dimensions of associated sound-producing apparatus increased with body size, indicating sound features would also be influenced by spiny lobster size. Indeed, temporal sound features changed with body size, suggesting differences in calling songs could be used for spiny lobster acoustic communication. Source levels (peak-peak) ranged from 131 to 164 dB re 1μPa for smaller and larger lobsters, respectively, which could be explained by more efficient resonating structures in larger animals. In addition, dominant frequencies were highly constrained by ambient noise levels, masking the low-frequency content of low intensity sounds from smaller spiny lobsters. Although the ecological function of spiny lobster sounds is not clear yet, these results suggest larger body sizes benefit because louder calls increase the broadcast area and potential interactions with conspecifics, as shown in the insect bioacoustic literature.
- Published
- 2022
- Full Text
- View/download PDF
13. Do Soluble Phosphates Direct the Formose Reaction towards Pentose Sugars?
- Author
-
Camprubi E, Harrison SA, Jordan SF, Bonnel J, Pinna S, and Lane N
- Subjects
- Mass Spectrometry, Phosphates, Sugars, Pentoses chemistry, Ribose chemistry
- Abstract
The formose reaction has been a leading hypothesis for the prebiotic synthesis of sugars such as ribose for many decades but tends to produce complex mixtures of sugars and often tars. Channeling the formose reaction towards the synthesis of biologically useful sugars such as ribose has been a holy grail of origins-of-life research. Here, we tested the hypothesis that a simple, prebiotically plausible phosphorylating agent, acetyl phosphate, could direct the formose reaction towards ribose through phosphorylation of intermediates in a manner resembling gluconeogenesis and the pentose phosphate pathway. We did indeed find that addition of acetyl phosphate to a developing formose reaction stabilized pentoses, including ribose, such that after 5 h of reaction about 10-fold more ribose remained compared with control runs. But mechanistic analyses using liquid chromatography-mass spectrometry showed that, far from being directed towards ribose by phosphorylation, the formose reaction was halted by the precipitation of Ca
2+ ions as phosphate minerals such as apatite and hydroxyapatite. Adding orthophosphate had the same effect. Phosphorylated sugars were only detected below the limit of quantification when adding acetyl phosphate. Nonetheless, our findings are not strictly negative. The sensitivity of the formose reaction to geochemically reasonable conditions, combined with the apparent stability of ribose under these conditions, serves as a valuable constraint on possible pathways of sugar synthesis at the origin of life.- Published
- 2022
- Full Text
- View/download PDF
14. Vector acoustic and polarization properties of underwater ship noise.
- Author
-
Dahl PH and Bonnel J
- Abstract
Vector acoustic field properties measured during the 2017 Seabed Characterization Experiment (SBCEX17) are presented. The measurements were made using the Intensity Vector Autonomous Recorder (IVAR) that records acoustic pressure and acceleration from which acoustic velocity is obtained. Potential and kinetic energies of underwater noise from two ship sources, computed in decidecimal bands centered between 25-630 Hz, are equal within calibration uncertainty of ±1.5 dB, representing a practical result towards the inference of kinematic properties from pressure-only measurements. Bivariate signals limited to two acoustic velocity components are placed in the context of the Stokes framework to describe polarization properties, such as the degree of polarization, which represents a statistical measure of the dispersion of the polarization properties. A bivariate signal composed of vertical and radial velocity components within a narrow frequency band centered at 63 Hz representing different measures of circularity and degree of polarization is examined in detail, which clearly demonstrates properties of bivariate signal trajectory. An examination of the bivariate signal composed of the two horizontal components of velocity within decidecimal bands centered at 63 Hz and 250 Hz demonstrates the importance of the degree of polarization in bearing estimation of moving sources.
- Published
- 2022
- Full Text
- View/download PDF
15. Maximum entropy inference of seabed properties using waveguide invariant features from surface ships.
- Author
-
Knobles DP, Neilsen TB, Wilson PS, Hodgkiss WS, Bonnel J, and Lin YT
- Abstract
Acoustic data were recorded on two vertical line arrays (VLAs) deployed in the New England Mud Patch during the Seabed Characterization Experiment 2017 in about 75 m of water. The sound recorded during the passage of merchant ships permits identification of singular points for the waveguide invariant β for mode pairs (1,n):β
1,n ,for n=2,3,4,5, in the 15-80 Hz band. Using prior geophysical information and an acoustic data sample from the merchant ship KALAMATA, a geoacoustic model M of the seabed was developed. Then, using data samples from other merchant ships, a feature-ensemble maximum entropy method is employed to infer the statistical properties of geoacoustic parameter values for the sound speeds in a surface mud layer and a deep sand layer. Technical challenges include a sparsity of observed singular points, the unique identification of mode pairs for an observed singular point, and the deviation of the waveguide from horizontal stratification. A geoacoustic model M is developed that reproduced the observed β≈-1 for f < 20 Hz and mode cutoff features at about 15 Hz. The statistical low-frequency inference of the singular point structure from multiple ships provides evidence of an angle of intromission at the water sediment interface with an average sound speed ratio of about 0.986 and an average sound speed for the deeper sand layer of about 1775 m/s.- Published
- 2022
- Full Text
- View/download PDF
16. TOSSIT: A low-cost, hand deployable, rope-less and acoustically silent mooring for underwater passive acoustic monitoring.
- Author
-
Zitterbart DP, Bocconcelli A, Ochs M, and Bonnel J
- Abstract
Passive Acoustic Monitoring (PAM) has been used to study the ocean for decades across several fields to answer biological, geological and meteorological questions such as marine mammal presence, measures of anthropogenic noise in the ocean, and monitoring and prediction of underwater earthquakes and tsunamis. While in previous decades the high cost of acoustic instruments limited its use, miniaturization and microprocessor advances dramatically reduced the cost for passive acoustic monitoring instruments making PAM available for a broad scientific community. Such low-cost devices are often deployed by divers or on mooring lines with a surface buoy, which limit their use to diving depth and coastal regions. Here, we present a low-cost, low self-noise and hand-deployable PAM mooring design, called TOSSIT. It can be used in water as deep as 500 m, and can be deployed and recovered by hand by a single operator (more comfortably with two) in a small boat. The TOSSIT modular mooring system consists of a light and strong non-metallic frame that can fit a variety of sensors including PAM instruments, acoustic releases, additional power packages, environmental parameter sensors. The TOSSIT's design is rope-less, which removes any risk of entanglement and keeps the self-noise very low., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2022 The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
17. Potential for acoustic masking due to shipping noise in the European lobster (Homarus gammarus).
- Author
-
Jézéquel Y, Bonnel J, and Chauvaud L
- Subjects
- Acoustics, Animals, Humans, Male, Ships, Sound, Nephropidae, Noise adverse effects
- Abstract
Marine traffic is the most pervasive underwater anthropogenic noise pollution which can mask acoustic communication in marine mammals and fish, but its effect in marine invertebrates remains unknown. Here, we performed an at sea experiment to study the potential of shipping noise to mask and alter lobster acoustic communication. We used hydrophones to record buzzing sounds and accelerometers to detect lobster carapace vibrations (i.e. the buzzing sounds' sources). We demonstrated that male individuals produced carapace vibrations under various ambient noise conditions, including heavy shipping noise. However, while the associated waterborne buzzing sounds could be recorded under natural ambient noise levels, they were masked by shipping noise. Additionally, lobsters significantly increased their call rates in presence of shipping noise, suggesting a vocal compensation due to the reduction of intraspecific communication. This study reports for the first time the potential acoustic masking of lobster acoustic communication by chronic anthropogenic noise pollution, which could affect ecologically important behaviors., (Copyright © 2021. Published by Elsevier Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
18. Global COVID-19 lockdown highlights humans as both threats and custodians of the environment.
- Author
-
Bates AE, Primack RB, Biggar BS, Bird TJ, Clinton ME, Command RJ, Richards C, Shellard M, Geraldi NR, Vergara V, Acevedo-Charry O, Colón-Piñeiro Z, Ocampo D, Ocampo-Peñuela N, Sánchez-Clavijo LM, Adamescu CM, Cheval S, Racoviceanu T, Adams MD, Kalisa E, Kuuire VZ, Aditya V, Anderwald P, Wiesmann S, Wipf S, Badihi G, Henderson MG, Loetscher H, Baerenfaller K, Benedetti-Cecchi L, Bulleri F, Bertocci I, Maggi E, Rindi L, Ravaglioli C, Boerder K, Bonnel J, Mathias D, Archambault P, Chauvaud L, Braun CD, Thorrold SR, Brownscombe JW, Midwood JD, Boston CM, Brooks JL, Cooke SJ, China V, Roll U, Belmaker J, Zvuloni A, Coll M, Ortega M, Connors B, Lacko L, Jayathilake DRM, Costello MJ, Crimmins TM, Barnett L, Denny EG, Gerst KL, Marsh RL, Posthumus EE, Rodriguez R, Rosemartin A, Schaffer SN, Switzer JR, Wong K, Cunningham SJ, Sumasgutner P, Amar A, Thomson RL, Stofberg M, Hofmeyr S, Suri J, Stuart-Smith RD, Day PB, Edgar GJ, Cooper AT, De Leo FC, Garner G, Des Brisay PG, Schrimpf MB, Koper N, Diamond MS, Dwyer RG, Baker CJ, Franklin CE, Efrat R, Berger-Tal O, Hatzofe O, Eguíluz VM, Rodríguez JP, Fernández-Gracia J, Elustondo D, Calatayud V, English PA, Archer SK, Dudas SE, Haggarty DR, Gallagher AJ, Shea BD, Shipley ON, Gilby BL, Ballantyne J, Olds AD, Henderson CJ, Schlacher TA, Halliday WD, Brown NAW, Woods MB, Balshine S, Juanes F, Rider MJ, Albano PS, Hammerschlag N, Hays GC, Esteban N, Pan Y, He G, Tanaka T, Hensel MJS, Orth RJ, Patrick CJ, Hentati-Sundberg J, Olsson O, Hessing-Lewis ML, Higgs ND, Hindell MA, McMahon CR, Harcourt R, Guinet C, Hirsch SE, Perrault JR, Hoover SR, Reilly JD, Hobaiter C, Gruber T, Huveneers C, Udyawer V, Clarke TM, Kroesen LP, Hik DS, Cherry SG, Del Bel Belluz JA, Jackson JM, Lai S, Lamb CT, LeClair GD, Parmelee JR, Chatfield MWH, Frederick CA, Lee S, Park H, Choi J, LeTourneux F, Grandmont T, de-Broin FD, Bêty J, Gauthier G, Legagneux P, Lewis JS, Haight J, Liu Z, Lyon JP, Hale R, D'Silva D, MacGregor-Fors I, Arbeláez-Cortés E, Estela FA, Sánchez-Sarria CE, García-Arroyo M, Aguirre-Samboní GK, Franco Morales JC, Malamud S, Gavriel T, Buba Y, Salingré S, Lazarus M, Yahel R, Ari YB, Miller E, Sade R, Lavian G, Birman Z, Gury M, Baz H, Baskin I, Penn A, Dolev A, Licht O, Karkom T, Davidzon S, Berkovitch A, Yaakov O, Manenti R, Mori E, Ficetola GF, Lunghi E, March D, Godley BJ, Martin C, Mihaly SF, Barclay DR, Thomson DJM, Dewey R, Bedard J, Miller A, Dearden A, Chapman J, Dares L, Borden L, Gibbs D, Schultz J, Sergeenko N, Francis F, Weltman A, Moity N, Ramírez-González J, Mucientes G, Alonso-Fernández A, Namir I, Bar-Massada A, Chen R, Yedvab S, Okey TA, Oppel S, Arkumarev V, Bakari S, Dobrev V, Saravia-Mullin V, Bounas A, Dobrev D, Kret E, Mengistu S, Pourchier C, Ruffo A, Tesfaye M, Wondafrash M, Nikolov SC, Palmer C, Sileci L, Rex PT, Lowe CG, Peters F, Pine MK, Radford CA, Wilson L, McWhinnie L, Scuderi A, Jeffs AG, Prudic KL, Larrivée M, McFarland KP, Solis R, Hutchinson RA, Queiroz N, Furtado MA, Sims DW, Southall E, Quesada-Rodriguez CA, Diaz-Orozco JP, Rodgers KS, Severino SJL, Graham AT, Stefanak MP, Madin EMP, Ryan PG, Maclean K, Weideman EA, Şekercioğlu ÇH, Kittelberger KD, Kusak J, Seminoff JA, Hanna ME, Shimada T, Meekan MG, Smith MKS, Mokhatla MM, Soh MCK, Pang RYT, Ng BXK, Lee BPY, Loo AHB, Er KBH, Souza GBG, Stallings CD, Curtis JS, Faletti ME, Peake JA, Schram MJ, Wall KR, Terry C, Rothendler M, Zipf L, Ulloa JS, Hernández-Palma A, Gómez-Valencia B, Cruz-Rodríguez C, Herrera-Varón Y, Roa M, Rodríguez-Buriticá S, Ochoa-Quintero JM, Vardi R, Vázquez V, Requena-Mesa C, Warrington MH, Taylor ME, Woodall LC, Stefanoudis PV, Zhang X, Yang Q, Zukerman Y, Sigal Z, Ayali A, Clua EEG, Carzon P, Seguine C, Corradini A, Pedrotti L, Foley CM, Gagnon CA, Panipakoochoo E, Milanes CB, Botero CM, Velázquez YR, Milchakova NA, Morley SA, Martin SM, Nanni V, Otero T, Wakeling J, Abarro S, Piou C, Sobral AFL, Soto EH, Weigel EG, Bernal-Ibáñez A, Gestoso I, Cacabelos E, Cagnacci F, Devassy RP, Loretto MC, Moraga P, Rutz C, and Duarte CM
- Abstract
The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness., Competing Interests: Authors declare no competing interests., (© 2021 Published by Elsevier Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
19. Classification of dispersive gunshot calls using a convolutional neural network.
- Author
-
Goldwater M, Bonnel J, Cammareri A, Wright D, and Zitterbart DP
- Subjects
- Animals, Humans, Neural Networks, Computer, Water, Acoustics, Whales
- Abstract
A convolutional neural network (CNN) was trained to identify multi-modal gunshots (impulse calls) within large acoustic datasets in shallow-water environments. South Atlantic right whale gunshots were used to train the CNN, and North Pacific right whale (NPRW) gunshots, to which the network was naive, were used for testing. The classifier generalizes to new gunshots from the NPRW and is shown to identify calls which can be used to invert for source range and/or environmental parameters. This can save human analysts hours of manually screening large passive acoustic monitoring datasets.
- Published
- 2021
- Full Text
- View/download PDF
20. Polarization of ocean acoustic normal modes.
- Author
-
Bonnel J, Flamant J, Dall'Osto DR, Le Bihan N, and Dahl PH
- Abstract
In ocean acoustics, shallow water propagation is conveniently described using normal mode propagation. This article proposes a framework to describe the polarization of normal modes, as measured using a particle velocity sensor in the water column. To do so, the article introduces the Stokes parameters, a set of four real-valued quantities widely used to describe polarization properties in wave physics, notably for light. Stokes parameters of acoustic normal modes are theoretically derived, and a signal processing framework to estimate them is introduced. The concept of the polarization spectrogram, which enables the visualization of the Stokes parameters using data from a single vector sensor, is also introduced. The whole framework is illustrated on simulated data as well as on experimental data collected during the 2017 Seabed Characterization Experiment. By introducing the Stokes framework used in many other fields, the article opens the door to a large set of methods developed and used in other contexts but largely ignored in ocean acoustics.
- Published
- 2021
- Full Text
- View/download PDF
21. Low-frequency ocean ambient noise on the Chukchi Shelf in the changing Arctic.
- Author
-
Bonnel J, Kinda GB, and P Zitterbart D
- Abstract
This article presents the study of a passive acoustic dataset recorded on the Chukchi Shelf from October 2016 to July 2017 during the Canada Basin Acoustic Propagation Experiment (CANAPE). The study focuses on the low-frequency (250-350 Hz) ambient noise (after individual transient signals are removed) and its environmental drivers. A specificity of the experimental area is the Beaufort Duct, a persistent warm layer intrusion of variable extent created by climate change, which favors long-range acoustic propagation. The Chukchi Shelf ambient noise shows traditional polar features: it is quieter and wind force influence is reduced when the sea is ice-covered. However, the study reveals two other striking features. First, if the experimental area is covered with ice, the ambient noise drops by up to 10 dB/Hz when the Beaufort Duct disappears. Further, a large part of the noise variability is driven by distant cryogenic events, hundreds of kilometers away from the acoustic receivers. This was quantified using correlations between the CANAPE acoustic data and distant ice-drift magnitude data (National Snow and Ice Data Center).
- Published
- 2021
- Full Text
- View/download PDF
22. Sound detection by the American lobster ( Homarus americanus ).
- Author
-
Jézéquel Y, Jones IT, Bonnel J, Chauvaud L, Atema J, and Mooney TA
- Subjects
- Animals, Auditory Threshold, Evoked Potentials, Auditory, Female, Male, Sound, Hearing, Nephropidae
- Abstract
Although many crustaceans produce sounds, their hearing abilities and mechanisms are poorly understood, leaving uncertainties regarding whether or how these animals use sound for acoustic communication. Marine invertebrates lack gas-filled organs required for sound pressure detection, but some of them are known to be sensitive to particle motion. Here, we examined whether the American lobster ( Homarus americanus ) could detect sound and subsequently sought to discern the auditory mechanisms. Acoustic stimuli responses were measured using auditory evoked potential (AEP) methods. Neurophysiological responses were obtained from the brain using tone pips between 80 and 250 Hz, with best sensitivity at 80-120 Hz. There were no significant differences between the auditory thresholds of males and females. Repeated controls (recordings from deceased lobsters, moving electrodes away from the brain and reducing seawater temperature) indicated the evoked potentials' neuronal origin. In addition, AEP responses were similar before and after antennules (including statocysts) were ablated, demonstrating that the statocysts, a long-proposed auditory structure in crustaceans, are not the sensory organs responsible for lobster sound detection. However, AEPs could be eliminated (or highly reduced) after immobilizing hairfans, which cover much of lobster bodies. These results suggest that these external cuticular hairs are likely to be responsible for sound detection, and imply that hearing is mechanistically possible in a wider array of invertebrates than previously considered. Because the lobsters' hearing range encompasses the fundamental frequency of their buzzing sounds, it is likely that they use sound for intraspecific communication, broadening our understanding of the sensory ecology of this commercially vital species. The lobsters' low-frequency acoustic sensitivity also underscores clear concerns about the potential impacts of anthropogenic noise., Competing Interests: Competing interestsThe authors declare no competing or financial interests., (© 2021. Published by The Company of Biologists Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
23. Settings of demersal longlines reveal acoustic cues that can inform toothed whales where and when to depredate.
- Author
-
Richard G, Samaran F, Guinet C, and Bonnel J
- Abstract
Fishing boats produce acoustic cues while hauling longlines. These acoustic signals are known to be used by odontocetes to detect the fishing activity and to depredate. However, very little is known about potential interactions before hauling. This article describes the acoustic signature of the setting activity. Using passive acoustic recorders attached to the buoys of longlines, this work demonstrates an increase in the ambient sound of ∼6 dB re 1 μPa
2 Hz-1 within 2-7 kHz during the setting activity. This could also be used as an acoustic cue by depredating species, suggesting that predators can detect longlines as soon as they are set.- Published
- 2021
- Full Text
- View/download PDF
24. Metamorphosis shapes cranial diversity and rate of evolution in salamanders.
- Author
-
Fabre AC, Bardua C, Bon M, Clavel J, Felice RN, Streicher JW, Bonnel J, Stanley EL, Blackburn DC, and Goswami A
- Subjects
- Animals, Life Cycle Stages, Phylogeny, Skull, Metamorphosis, Biological, Urodela genetics
- Abstract
Metamorphosis is widespread across the animal kingdom and induces fundamental changes in the morphology, habitat and resources used by an organism during its lifetime. Metamorphic species are likely to experience more dynamic selective pressures through ontogeny compared with species with single-phase life cycles, which may drive divergent evolutionary dynamics. Here, we reconstruct the cranial evolution of the salamander using geometric morphometric data from 148 species spanning the order's full phylogenetic, developmental and ecological diversity. We demonstrate that life cycle influences cranial shape diversity and rate of evolution. Shifts in the rate of cranial evolution are consistently associated with transitions from biphasic to either direct-developing or paedomorphic life cycle strategies. Direct-developers exhibit the slowest rates of evolution and the lowest disparity, and paedomorphic species the highest. Species undergoing complete metamorphosis (biphasic and direct-developing) exhibit greater cranial modularity (evolutionary independence among regions) than do paedomorphic species, which undergo differential metamorphosis. Biphasic and direct-developing species also display elevated disparity relative to the evolutionary rate for bones associated with feeding, whereas this is not the case for paedomorphic species. Metamorphosis has profoundly influenced salamander cranial evolution, requiring greater autonomy of cranial elements and facilitating the rapid evolution of regions that are remodelled through ontogeny. Rather than compounding functional constraints on variation, metamorphosis seems to have promoted the morphological evolution of salamanders over 180 million years, which may explain the ubiquity of this complex life cycle strategy across disparate organisms.
- Published
- 2020
- Full Text
- View/download PDF
25. Spiny lobster sounds can be detectable over kilometres underwater.
- Author
-
Jézéquel Y, Chauvaud L, and Bonnel J
- Subjects
- Animals, Behavior, Animal, Noise, Sound, Animal Communication, Palinuridae physiology
- Abstract
The detection ranges of broadband sounds produced by marine invertebrates are not known. To address this deficiency, a linear array of hydrophones was built in a shallow water area to experimentally investigate the propagation features of the sounds from various sizes of European spiny lobsters (Palinurus elephas), recorded between 0.5 and 100 m from the animals. The peak-to-peak source levels (SL, measured at one meter from the animals) varied significantly with body size, the largest spiny lobsters producing SL up to 167 dB re 1 µPa
2 . The sound propagation and its attenuation with the distance were quantified using the array. This permitted estimation of the detection ranges of spiny lobster sounds. Under the high ambient noise conditions recorded in this study, the sounds propagated between 5 and 410 m for the smallest and largest spiny lobsters, respectively. Considering lower ambient noise levels and different realistic propagation conditions, spiny lobster sounds can be detectable up to several kilometres away from the animals, with sounds from the largest individuals propagating over 3 km. Our results demonstrate that sounds produced by P. elephas can be utilized in passive acoustic programs to monitor and survey this vulnerable species at kilometre scale in coastal waters.- Published
- 2020
- Full Text
- View/download PDF
26. Nonlinear time-warping made simple: A step-by-step tutorial on underwater acoustic modal separation with a single hydrophone.
- Author
-
Bonnel J, Thode A, Wright D, and Chapman R
- Abstract
Classical ocean acoustic experiments involve the use of synchronized arrays of sensors. However, the need to cover large areas and/or the use of small robotic platforms has evoked interest in single-hydrophone processing methods for localizing a source or characterizing the propagation environment. One such processing method is "warping," a non-linear, physics-based signal processing tool dedicated to decomposing multipath features of low-frequency transient signals (frequency f < 500 Hz), after their propagation through shallow water (depth D < 200 m) and their reception on a distant single hydrophone (range r > 1 km). Since its introduction to the underwater acoustics community in 2010, warping has been adopted in the ocean acoustics literature, mostly as a pre-processing method for single receiver geoacoustic inversion. Warping also has potential applications in other specialties, including bioacoustics; however, the technique can be daunting to many potential users unfamiliar with its intricacies. Consequently, this tutorial article covers basic warping theory, presents simulation examples, and provides practical experimental strategies. Accompanying supplementary material provides matlab code and simulated and experimental datasets for easy implementation of warping on both impulsive and frequency-modulated signals from both biotic and man-made sources. This combined material should provide interested readers with user-friendly resources for implementing warping methods into their own research.
- Published
- 2020
- Full Text
- View/download PDF
27. Acoustic behaviour of male European lobsters ( Homarus gammarus ) during agonistic encounters.
- Author
-
Jézéquel Y, Coston-Guarini J, Chauvaud L, and Bonnel J
- Subjects
- Acoustics, Animal Shells physiology, Animals, Male, Vibration, Agonistic Behavior physiology, Animal Communication, Nephropidae physiology
- Abstract
Previous studies have demonstrated that male European lobsters ( Homarus gammarus ) use chemical and visual signals as a means of intraspecific communication during agonistic encounters. In this study, we show that they also produce buzzing sounds during these encounters. This result was missed in earlier studies because low-frequency buzzing sounds are highly attenuated in tanks, and are thus difficult to detect with hydrophones. To address this issue, we designed a behavioural tank experiment using hydrophones, with accelerometers placed on the lobsters to directly detect their carapace vibrations (i.e. the sources of the buzzing sounds). While we found that both dominant and submissive individuals produced carapace vibrations during every agonistic encounter, very few of the associated buzzing sounds (15%) were recorded by the hydrophones. This difference is explained by their high attenuation in tanks. We then used the method of algorithmic complexity to analyse the carapace vibration sequences as call-and-response signals between dominant and submissive individuals. Even though some intriguing patterns appeared for closely size-matched pairs (<5 mm carapace length difference), the results of the analysis did not permit us to infer that the processes underlying these sequences could be differentiated from random ones. Thus, such results prevented any conclusions about acoustic communication. This concurs with both the high attenuation of the buzzing sounds during the experiments and the poor understanding of acoustic perception by lobsters. New approaches that circumvent tank acoustic issues are now required to validate the existence of acoustic communication in lobsters., Competing Interests: Competing interestsThe authors declare no competing or financial interests., (© 2020. Published by The Company of Biologists Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
28. Evidence of deep-sea interactions between toothed whales and longlines.
- Author
-
Richard G, Bonnel J, Tixier P, Arnould JPY, Janc A, and Guinet C
- Subjects
- Animals, Behavior, Animal, Fisheries, Sperm Whale, Whales
- Abstract
Toothed whales (odontocetes) feeding on fish caught on hooks in longline fisheries is a growing issue worldwide. The substantial impacts that this behaviour, called depredation, can have on the fishing economy, fish stocks and odontocetes populations, raise a critical need for mitigation solutions to be developed. However, information on when, where and how odontocete depredation occurs underwater is still limited, especially in demersal longline fisheries (fishing gear set on the seafloor). In the present study, we investigated depredation by killer whales (Orcinus orca) and sperm whales (Physeter macrocephalus) on demersal longlines in the French Patagonian toothfish fishery (Southern Ocean). Using a combination of animal-borne behavioural and longline-attached data loggers, we demonstrated that both species are able to depredate longlines on the seafloor. This study, therefore, suggests that odontocetes whales-longline interaction events at depth may be unrecorded when assessing depredation rates from surface observations during hauling phases only. This result has implications for the management of fisheries facing similar depredation issues as underestimated depredation rates may result in unaccounted fish mortality in fish-stock assessments. Therefore, while further research should be conducted to assess the extent of deep-sea whale-longline interaction events during soaking, the evidence that depredation can occur at any time during the whole fishing process as brought out by this study should be considered in future developments of mitigation solutions to the issue.
- Published
- 2020
- Full Text
- View/download PDF
29. Dynamic imaging of a capillary-gravity wave in shallow water using amplitude variations of eigenbeams.
- Author
-
van Baarsel T, Roux P, Mars JI, Bonnel J, Arrigoni M, Kerampran S, and Nicolas B
- Abstract
Dynamic acoustic imaging of a surface wave propagating at an air-water interface is a complex task that is investigated here at the laboratory scale through an ultrasonic experiment in a shallow water waveguide. Using a double beamforming algorithm between two source-receiver arrays, the authors isolate and identify each multi-reverberated eigenbeam that interacts with the air-water and bottom interfaces. The waveguide transfer matrix is recorded 100 times per second while a low-amplitude gravity wave is generated by laser-induced breakdown at the middle of the waveguide, just above the water surface. The controlled, and therefore repeatable, breakdown results in a blast wave that interacts with the air-water interface, which creates ripples at the surface that propagate in both directions. The amplitude perturbations of each ultrasonic eigenbeam are measured during the propagation of the gravity-capillary wave. Inversion of the surface deformation is performed from the amplitude variations of the eigenbeams using a diffraction-based sensitivity kernel approach. The accurate ultrasonic imaging of the displacement of the air-water interface is compared to simultaneous measurements with an optical camera, which provides independent validation.
- Published
- 2019
- Full Text
- View/download PDF
30. Understanding deep-water striation patterns and predicting the waveguide invariant as a distribution depending on range and depth.
- Author
-
Emmetière R, Bonnel J, Géhant M, Cristol X, and Chonavel T
- Abstract
The Waveguide Invariant (WI) theory has been introduced to quantify the orientation of the intensity interference patterns in a range-frequency domain. When the sound speed is constant over the water column, the WI is a scalar with the canonical value of 1. But, when considering shallow waters with a stratified sound speed profile, the WI ceases to be constant and is more appropriately described by a distribution, which is mainly sensitive to source/receiver depths. Such configurations have been widely investigated, with practical applications including passive source localization. However, in deep waters, the interference pattern is much more complex and variable. In fact the observed WI varies with source/receiver depth but it also varies very quickly with source-array range. In this paper, the authors investigate two phenomena responsible for this variability, namely the dominance of the acoustic field by groups of modes and the frequency dependence of the eigenmodes. Using a ray-mode approach, these two features are integrated in a WI distribution derivation. Their importance in deep-water is validated by testing the calculated WI distribution against a reference distribution directly measured on synthetic data. The proposed WI derivation provides a thorough way to predict and understand the striation patterns in deep-water context.
- Published
- 2018
- Full Text
- View/download PDF
31. Geoacoustic inversion on the New England Mud Patch using warping and dispersion curves of high-order modes.
- Author
-
Bonnel J, Lin YT, Eleftherakis D, Goff JA, Dosso S, Chapman R, Miller JH, and Potty GR
- Abstract
This paper presents single receiver geoacoustic inversion of a combustive sound source signal, recorded during the 2017 Seabed Characterization Experiment on the New England Mud Patch, in an area where water depth is around 70 m. There are two important features in this study. First, it is shown that high-order modes can be resolved and estimated using warping (up to mode number 18 over the frequency band 20-440 Hz). However, it is not possible to determine mode numbers from the data, so that classical inversion methods that require mode identification cannot be applied. To solve this issue, an inversion algorithm that jointly estimates geoacoustic properties and identifies mode number is proposed. It is successfully applied on a range-dependent track, and provides a reliable range-average estimation of geoacoustic properties of the mud layer, an important feature of the seabed on the experimental area.
- Published
- 2018
- Full Text
- View/download PDF
32. Effects of Experimental Lead Exposure on Testis of the Chestnut Capped Blackbird Chrysomus ruficapillus.
- Author
-
Leidens D, Bianchini A, Varela Junior AS, Barcarolli IF, Rosa CE, Bonnel J, Calabuig CP, and Corcini CD
- Subjects
- Animals, Environmental Pollutants blood, Lead blood, Male, Testis metabolism, Tissue Distribution, Environmental Pollutants toxicity, Lead toxicity, Passeriformes growth & development, Reproduction drug effects, Spermatozoa drug effects, Testis drug effects
- Abstract
Lead (Pb) effects on testis histology, as well as sperm quality and oxidative status were evaluated in male Chestnut Capped Blackbird (Chrysomus ruficapillus). Wild blackbirds were captured, immediately sampled (field group) or kept in captivity and treated with a single intraperitoneal injection of saline solution (control) or saline solution with Pb acetate (50 or 100 mg/kg Pb). Seven days after injection, whole blood, ductus deferens and testis samples were collected. Increased Pb concentrations were observed in whole blood and testis of Pb-exposed blackbirds with respect to those from field and control blackbirds. Sperm cells of Pb-exposed blackbirds showed loss of membrane integrity, mitochondrial functionality, and DNA integrity. Also, oxidative damage was observed in testis of blackbirds injected with 100 mg/kg Pb. These findings indicate that Pb is accumulated in testis of C. ruficapillus, inducing severe morphological and biochemical injury that can compromise the reproductive performance of male blackbirds. Although the exposure scenario (Pb acetate, high dosage and intraperitoneal injection) tested in the present study would likely not occur in the wild, it was adequate to show potential and relevant toxic effects of Pb in wild birds.
- Published
- 2018
- Full Text
- View/download PDF
33. Using the trapped energy ratio for source depth discrimination with a horizontal line array: Theory and experimental results.
- Author
-
Conan E, Bonnel J, Nicolas B, and Chonavel T
- Abstract
The problem of acoustic source depth discrimination was introduced as a way to get basic information on source depth in configurations where accurate depth estimation is not feasible. It is a binary classification problem, aiming to evaluate whether the source is near the surface or submerged. Herein, the classification relies on a signal measured with a horizontal line array in shallow water. Knowing the source-array distance is not required but the source bearing has to be close to the array endfire. Signal processing relies on a normal-mode propagation model, and thus requires prior knowledge of the mode characteristics. The decision relies on an estimation of the trapped energy ratio in mode space. The performance is predicted with simulations and Monte Carlo methods, allowing one to compare several estimators based on different mode filters, and to choose an appropriate decision threshold. The impact on performance of frequency, noise level, horizontal aperture, and environmental mismatch is numerically studied. Finally, the approach is validated on experimental data acquired with a horizontal line array deployed off the coast of New Jersey, and the impact of errors in the environmental model is illustrated. The investigated approach successfully identifies a surface ship and a submerged towed source.
- Published
- 2017
- Full Text
- View/download PDF
34. Identification of two potential whale calls in the southern Indian Ocean, and their geographic and seasonal occurrence.
- Author
-
Leroy EC, Samaran F, Bonnel J, and Royer JY
- Subjects
- Acoustics, Animals, Indian Ocean, Seasons, Sound Spectrography, Balaenoptera, Vocalization, Animal
- Abstract
Since passive acoustic monitoring is widely used, unidentified acoustic signals from marine mammals are commonly reported. The signal characteristics and emission patterns are the main clues to identify the possible sources. In this study, the authors describe two previously unidentified sounds, recorded at up to five widely-spaced sites (30 × 30 degree area) in the southern Indian Ocean, in 2007 and between 2010 and 2015. The first reported signal (M-call) consists of a single tonal unit near 22 Hz and lasting about 10 s, repeated with an interval longer than 2 min. This signal is only detected in 2007. The second signal (P-call) is also a tonal unit of 10 s, repeated every 160 s, but at a frequency near 27 Hz. Its yearly number increased greatly between 2007 and 2010, and moderately since then. Based on their characteristics and seasonal patterns, this study shows that both signals are clearly distinct from any known calls of blue whale subspecies and populations dwelling in the southern Indian Ocean. However, they display similarities with blue whale vocalizations. More particularly, the P-call can be mistaken for the first tonal unit of the Antarctic blue whale Z-call.
- Published
- 2017
- Full Text
- View/download PDF
35. Acoustic measurements of post-dive cardiac responses in southern elephant seals ( Mirounga leonina ) during surfacing at sea.
- Author
-
Day L, Jouma'a J, Bonnel J, and Guinet C
- Subjects
- Acoustics, Animals, Female, Respiration, Time Factors, Diving physiology, Heart Rate physiology, Seals, Earless physiology
- Abstract
Measuring physiological data in free-ranging marine mammals remains challenging, owing to their far-ranging foraging habitat. Yet, it is important to understand how these divers recover from effort expended underwater, as marine mammals can perform deep and recurrent dives. Among them, southern elephant seals ( Mirounga leonina ) are one of the most extreme divers, diving continuously at great depth and for long duration while travelling over large distances within the Southern Ocean. To determine how they manage post-dive recovery, we deployed hydrophones on four post-breeding female southern elephant seals. Cardiac data were extracted from sound recordings when the animal was at the surface, breathing. Mean heart rate at the surface was 102.4±4.9 beats min
-1 and seals spent on average 121±20 s breathing. During these surface intervals, the instantaneous heart rate increased with time. Elephant seals are assumed to drastically slow their heart rate (bradycardia) while they are deep underwater, and increase it (tachycardia) during the ascent towards the surface. Our finding suggests that tachycardia continues while the animal stays breathing at the surface. Also, the measured mean heart rate at the surface was unrelated to the duration and swimming effort of the dive prior to the surface interval. Recovery (at the surface) after physical effort (underwater) appears to be related to the overall number of heart beats performed at the surface, and therefore total surface duration. Southern elephant seals recover from dives by adjusting the time spent at the surface rather than their heart rate., Competing Interests: Competing interestsThe authors declare no competing or financial interests., (© 2017. Published by The Company of Biologists Ltd.)- Published
- 2017
- Full Text
- View/download PDF
36. Using nonlinear time warping to estimate North Pacific right whale calling depths in the Bering Sea.
- Author
-
Thode A, Bonnel J, Thieury M, Fagan A, Verlinden C, Wright D, Berchok C, and Crance J
- Subjects
- Animals, Ecosystem, Nonlinear Dynamics, Signal Processing, Computer-Assisted, Sound Spectrography, Species Specificity, Acoustics, Endangered Species, Environmental Monitoring methods, Vocalization, Animal classification, Whales classification, Whales psychology
- Abstract
Calling depth distributions are estimated for two types of calls produced by critically endangered eastern North Pacific right whales (NPRWs) in the Bering Sea, using passive acoustic data collected with bottom-mounted hydrophone recorders. Nonlinear time resampling of 12 NPRW "upcalls" and 20 "gunshots" recorded in a critical NPRW habitat isolated individual normal mode arrivals from each call. The relative modal arrival times permitted range estimates between 1 and 40 km, while the relative modal amplitudes permitted call depth estimates, provided that environmental inversions were obtained from high signal-to-noise ratio calls. Gunshot sounds were generally only produced at a few meters depth, while upcall depths clustered between 10 and 25 m, consistent with previously published bioacoustic tagging results from North Atlantic right whales. A Wilcoxon rank sum test rejected the null hypothesis that the mean calling depths of the two call types were the same (p = 2.9 × 10
-5 ); the null hypothesis was still rejected if the sample set was restricted to one call per acoustic encounter (p = 0.02). Propagation modeling demonstrates that deeper depths enhance acoustic propagation and that source depth estimates impact both NPRW upcall source level and detection range estimates.- Published
- 2017
- Full Text
- View/download PDF
37. [Intestinal pseudo-obstruction].
- Author
-
Zumstein C, Piemont A, Bonnel J, and Wilhem J
- Subjects
- Humans, Intestinal Pseudo-Obstruction
- Abstract
Competing Interests: C. Zumstein déclare des actions de formation pour AstraZeneca. A. Piémont déclare des actions de formation pour RB Pharmaceuticals France. J. Bonnel déclare n’avoir aucun lien d’intérêts. J. Wilhelm déclare des actions de formation pour Sanofi.
- Published
- 2017
38. Waveguide mode amplitude estimation using warping and phase compensation.
- Author
-
Bonnel J, Caporale S, and Thode A
- Abstract
In shallow water, low-frequency propagation can be described by modal theory. Acoustical oceanographic measurements under this situation have traditionally relied on spatially filtering signals with arrays of synchronized hydrophones. Recent work has demonstrated how a method called warping allows isolation of individual mode arrivals on a single hydrophone, a discovery that subsequently opened the door for practical single-receiver source localization and geoacoustic inversion applications. Warping is a non-linear resampling of the signal based on a simplistic waveguide model. Because warping is robust to environmental mismatch, it provides accurate estimates of the mode phase even when the environment is poorly known. However, the approach has issues with mode amplitude estimation, particularly for the first arriving mode. As warping is not invariant to time shifting, it relies on accurate estimates of the signal's time origin, which in turn heavily impacts the first mode's amplitude estimate. Here, a revised warping operator is proposed that incorporates as much prior environmental information as possible, and is actually equivalent to compensating the relative phase of each mode. Warping and phase compensation are applied to both simulated and experimental data. The proposed methods notably improve the amplitude estimates of the first arriving mode.
- Published
- 2017
- Full Text
- View/download PDF
39. Seasonal and Diel Vocalization Patterns of Antarctic Blue Whale (Balaenoptera musculus intermedia) in the Southern Indian Ocean: A Multi-Year and Multi-Site Study.
- Author
-
Leroy EC, Samaran F, Bonnel J, and Royer JY
- Subjects
- Acoustics, Animal Migration, Animals, Antarctic Regions, Balaenoptera classification, Geography, Indian Ocean, Oceanography, Population Dynamics, Reproducibility of Results, Species Specificity, Balaenoptera physiology, Circadian Rhythm, Seasons, Sound Spectrography methods, Vocalization, Animal physiology
- Abstract
Passive acoustic monitoring is an efficient way to provide insights on the ecology of large whales. This approach allows for long-term and species-specific monitoring over large areas. In this study, we examined six years (2010 to 2015) of continuous acoustic recordings at up to seven different locations in the Central and Southern Indian Basin to assess the peak periods of presence, seasonality and migration movements of Antarctic blue whales (Balaenoptera musculus intermedia). An automated method is used to detect the Antarctic blue whale stereotyped call, known as Z-call. Detection results are analyzed in terms of distribution, seasonal presence and diel pattern of emission at each site. Z-calls are detected year-round at each site, except for one located in the equatorial Indian Ocean, and display highly seasonal distribution. This seasonality is stable across years for every site, but varies between sites. Z-calls are mainly detected during autumn and spring at the subantarctic locations, suggesting that these sites are on the Antarctic blue whale migration routes, and mostly during winter at the subtropical sites. In addition to these seasonal trends, there is a significant diel pattern in Z-call emission, with more Z-calls in daytime than in nighttime. This diel pattern may be related to the blue whale feeding ecology., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2016
- Full Text
- View/download PDF
40. Source depth discrimination with a vertical line array.
- Author
-
Conan E, Bonnel J, Chonavel T, and Nicolas B
- Abstract
Source depth estimation with a vertical line array generally involves mode filtering, then matched-mode processing. Because mode filtering is an ill-posed problem if the water column is not well-sampled, concerns for robustness motivate a simpler approach: source depth discrimination considered as a binary classification problem. It aims to evaluate whether the source is near the surface or submerged. These two hypotheses are formulated in terms of normal modes, using the concept of trapped and free modes. Decision metrics based on classic mode filters are proposed. Monte Carlo methods are used to predict performance and set the parameters of a classifier accordingly.
- Published
- 2016
- Full Text
- View/download PDF
41. Bayesian source localization with uncertain Green's function in an uncertain shallow water ocean.
- Author
-
Le Gall Y, Dosso SE, Socheleau FX, and Bonnel J
- Abstract
Matched-field acoustic source localization is a challenging task when environmental properties of the oceanic waveguide are not precisely known. Errors in the assumed environment (mismatch) can cause severe degradations in localization performance. This paper develops a Bayesian approach to improve robustness to environmental mismatch by considering the waveguide Green's function to be an uncertain random vector whose probability density accounts for environmental uncertainty. The posterior probability density is integrated over the Green's function probability density to obtain a joint marginal probability distribution for source range and depth, accounting for environmental uncertainty and quantifying localization uncertainty. Because brute-force integration in high dimensions can be costly, an efficient method is developed in which the multi-dimensional Green's function integration is approximated by one-dimensional integration over a suitably defined correlation measure. An approach to approximate the Green's function covariance matrix, which represents the environmental mismatch, is developed based on modal analysis. Examples are presented to illustrate the method and Monte-Carlo simulations are carried out to evaluate its performance relative to other methods. The proposed method gives efficient, reliable source localization and uncertainties with improved robustness toward environmental mismatch.
- Published
- 2016
- Full Text
- View/download PDF
42. Automated detection of Antarctic blue whale calls.
- Author
-
Socheleau FX, Leroy E, Pecci AC, Samaran F, Bonnel J, and Royer JY
- Subjects
- Algorithms, Animals, Equipment Design, Models, Theoretical, Signal Processing, Computer-Assisted, Signal-To-Noise Ratio, Sound Spectrography, Species Specificity, Acoustics instrumentation, Balaenoptera physiology, Marine Biology instrumentation, Transducers, Pressure, Vocalization, Animal
- Abstract
This paper addresses the problem of automated detection of Z-calls emitted by Antarctic blue whales (B. m. intermedia). The proposed solution is based on a subspace detector of sigmoidal-frequency signals with unknown time-varying amplitude. This detection strategy takes into account frequency variations of blue whale calls as well as the presence of other transient sounds that can interfere with Z-calls (such as airguns or other whale calls). The proposed method has been tested on more than 105 h of acoustic data containing about 2200 Z-calls (as found by an experienced human operator). This method is shown to have a correct-detection rate of up to more than 15% better than the extensible bioacoustic tool package, a spectrogram-based correlation detector commonly used to study blue whales. Because the proposed method relies on subspace detection, it does not suffer from some drawbacks of correlation-based detectors. In particular, it does not require the choice of an a priori fixed and subjective template. The analytic expression of the detection performance is also derived, which provides crucial information for higher level analyses such as animal density estimation from acoustic data. Finally, the detection threshold automatically adapts to the soundscape in order not to violate a user-specified false alarm rate.
- Published
- 2015
- Full Text
- View/download PDF
43. Passive acoustic observations of tide height in the Iroise Sea using ambient noise.
- Author
-
Kinda GB and Bonnel J
- Abstract
Considering a broadband motionless source in a waveguide with a depth that varies with time, the time-frequency representation of the acoustic intensity shows a striation pattern than can be explained using the depth-frequency waveguide invariant. This phenomenon is used here to describe acoustic data recorded in the Iroise Sea, where intense tides occur. The originality of this study is that the acoustic data consist of only ambient noise. The best hypothesis is that these striations are created by distant marine traffic in the Bay of Brest, and the results suggest that tide height can be monitored using long-term passive acoustics.
- Published
- 2015
- Full Text
- View/download PDF
44. Compressed sensing for wideband wavenumber tracking in dispersive shallow water.
- Author
-
Le Courtois F and Bonnel J
- Abstract
In shallow water zones and at low frequency, seabed and water column properties can be estimated from the acoustic wavenumbers using inversion algorithms. When considering horizontal line arrays (HLA) and narrowband sources, the wavenumbers can be evaluated with classic spectral analysis methods. In this paper, a compressed sensing (CS) method for sparse recovery of the wavenumbers is proposed. This takes advantage of the few propagating modes and allows for spectral estimation when short HLA are used. The CS representation improves the wavenumber estimation, compared to the Fourier transform. However, for small arrays and several propagating modes, the CS generates interferences and does not allow proper wavenumber estimation. When considering broadband sources, it is possible to combine the wavenumbers estimated at several frequencies in order to build a frequency-wavenumber (f - k) representation. In this case, a post-processing tracking operation which improves the f - k resolution is presented. This relies on a general approach of waveguide physics and uses a particle filtering (PF) algorithm to track the wavenumbers. The consecutive use of CS and PF leads to a better wavenumber estimation. This methodology can be used for sources that are not at an end-fire position. It is illustrated by simulations and successfully applied on the Shallow Water 2006 data using the 32 sensor SHARK array.
- Published
- 2015
- Full Text
- View/download PDF
45. Range estimation of bowhead whale (Balaena mysticetus) calls in the Arctic using a single hydrophone.
- Author
-
Bonnel J, Thode AM, Blackwell SB, Kim K, and Macrander AM
- Subjects
- Animals, Arctic Regions, Motion, Oceans and Seas, Pressure, Signal Processing, Computer-Assisted, Signal-To-Noise Ratio, Sound, Sound Spectrography, Time Factors, Acoustics instrumentation, Bowhead Whale physiology, Transducers, Pressure, Vocalization, Animal
- Abstract
Bowhead whales generate low-frequency calls in shallow-water Arctic environments, whose dispersive propagation characteristics are well modeled by normal mode theory. As each mode propagates with a different group speed, a call's range can be inferred by the relative time-frequency dispersion of the modal arrivals. Traditionally, at close ranges modal arrivals are separated using synchronized hydrophone arrays. Here a nonlinear signal processing method called "warping" is used to filter the modes on just a single hydrophone. The filtering works even at relatively short source ranges, where distinct modal arrivals are not separable in a conventional spectrogram. However, this warping technique is limited to signals with monotonically increasing or decreasing frequency modulations, a relatively common situation for bowhead calls. Once modal arrivals have been separated, the source range can be estimated using conventional modal dispersion techniques, with the original source signal structure being recovered as a by-product. Twelve bowhead whale vocalizations recorded near Kaktovik (Alaska) in 2010, with signal-to-noise ratios between 6 and 23 dB, are analyzed, and the resulting single-receiver range estimates are consistent with those obtained independently via triangulation from widely-distributed vector sensor arrays. Geoacoustic inversions for each call are necessary in order to obtain the correct ranges.
- Published
- 2014
- Full Text
- View/download PDF
46. Autoregressive model for high-resolution wavenumber estimation in a shallow water environment using a broadband source.
- Author
-
Le Courtois F and Bonnel J
- Abstract
In a shallow water environment, wavenumbers can be estimated by computing time and spatial Fourier transforms of horizontal array measurements. The frequency-wavenumber representation allows wide band estimation but a sufficient number of hydrophones are required for accurate wavenumber resolution. This paper presents the application of an autoregressive (AR) model to compute the high resolution wavenumber spectrum. The smallest number of required sensors for the AR model is found using a stabilization diagram. The method is validated on simulated and experimental data. The wavenumbers are accurately estimated over a wide frequency band using fewer sensors than are needed for the spatial Fourier Transform.
- Published
- 2014
- Full Text
- View/download PDF
47. Inversion of seabed attenuation using time-warping of close range data.
- Author
-
Zeng J, Chapman NR, and Bonnel J
- Subjects
- Aluminum Silicates, Clay, Equipment Design, Motion, Nonlinear Dynamics, Oceanography instrumentation, Oceans and Seas, Signal Processing, Computer-Assisted, Sound Spectrography, Time Factors, Transducers, Acoustics instrumentation, Geologic Sediments, Oceanography methods, Sound, Water
- Abstract
An inversion scheme based on time-warping is presented for estimating seabed sound attenuation from modal dispersion of close-range single-hydrophone data. The dispersion information is extracted directly from the warped signal spectrum. Seabed sound speed and density are inverted from the modal group velocity curves, and the attenuation is inverted from the normalized modal amplitudes. The method is applied to experimental data collected in the Yellow Sea of China during the winter of 2002. The inverted sound speed and density are consistent with the sand-silt-clay sediment at the site, and the attenuation is nonlinear over the frequency band from 125-500 Hz.
- Published
- 2013
- Full Text
- View/download PDF
48. Passive estimation of the waveguide invariant per pair of modes.
- Author
-
Le Gall Y and Bonnel J
- Subjects
- Computer Simulation, Fourier Analysis, Motion, Numerical Analysis, Computer-Assisted, Oceans and Seas, Reproducibility of Results, Sound Spectrography, Time Factors, Transducers, Acoustics, Noise, Transportation, Ships, Water
- Abstract
In many oceanic waveguides, acoustic propagation is characterized by a parameter called waveguide invariant. This property is used in many passive and active sonar applications where knowledge of the waveguide invariant value is required. The waveguide invariant is classically considered as scalar but several studies show that it is better modeled by a distribution because of its dependence on frequency and mode pairs. This paper presents a new method for estimating the waveguide invariant distribution. Using the noise radiated by a distant ship and a single hydrophone, the proposed methodology allows estimating the waveguide invariant for each pair of modes in shallow water. Performance is evaluated on simulated data.
- Published
- 2013
- Full Text
- View/download PDF
49. Bayesian geoacoustic inversion of single hydrophone light bulb data using warping dispersion analysis.
- Author
-
Bonnel J, Dosso SE, and Ross Chapman N
- Abstract
This paper presents geoacoustic inversion of a light bulb implosion recorded during the Shallow Water 2006 experiment. The source is low frequency and impulsive, the environment is shallow water, and the acoustic signal is recorded using a single receiver. In this context, propagation is described by modal theory, and inversion is carried out by matching modal dispersion curves in the time-frequency domain. Experimental dispersion curves are estimated using an advanced signal processing method called warping, allowing inversion to be carried out at a relatively short range (~/=7 km). Moreover, the inversion itself is performed using Bayesian methodology. This allows inference of the seabed structure from the data, including the number of seabed layers resolved, optimal estimates of the seabed parameters, and quantitative uncertainty estimates. Inversion results of the experimental data are in good agreement with both ground truth and estimates from other experimental data in the same region.
- Published
- 2013
- Full Text
- View/download PDF
50. Passive geoacoustic inversion with a single hydrophone using broadband ship noise.
- Author
-
Gervaise C, Kinda BG, Bonnel J, Stéphan Y, and Vallez S
- Abstract
An inversion scheme is proposed, relying upon the inversion of the noise of a moving ship measured on a single distant hydrophone. The spectrogram of the measurements exhibits striations which depend on waveguide parameters. The periodic behavior of striations versus range are used to estimate the differences of radial wavenumber between couples of propagative modes at a given frequency. These wavenumber differences are stacked for several frequencies to form the relative dispersion curves. Such relative dispersion curves can be synthesized using a propagation model feeded with a bottom geoacoustic model. Inversion is performed by looking for the bottom properties that optimize the fit between measured and predicted relative dispersion curves. The inversion scheme is tested on simulated data. The conclusions are twofold: (1) a minimum 6 dB signal to noise ratio is required to obtained an unbiased estimate of compressional sound speed in the bottom with a 3 m s(-1) standard deviation; however, even with low signal to noise ratio, the estimation error remains bounded and (2) in the case of a multi-layer bottom, the scheme produces a single depth-average compressional sound speed. The inversion scheme is applied on experimental data. The results are fully consistent with a core sample measured around the receiving hydrophone., (© 2012 Acoustical Society of America)
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.