18 results on '"Brodsky, Stanley J."'
Search Results
2. Unified Description of Polarized and Unpolarized Quark Distributions in the Proton.
- Author
-
Liu T, Sufian RS, de Téramond GF, Dosch HG, Brodsky SJ, and Deur A
- Abstract
We propose a unified new approach to describe polarized and unpolarized quark distributions in the proton based on the gauge-gravity correspondence, light-front holography, and the generalized Veneziano model. We find that the spin-dependent quark distributions are uniquely determined in terms of the unpolarized distributions by chirality separation without the introduction of additional free parameters. The predictions are consistent with existing experimental data and agree with perturbative QCD constraints at large longitudinal momentum x. In particular, we predict the sign reversal of the polarized down-quark distribution in the proton at x=0.8±0.03, a key property of nucleon substructure which will be tested very soon in upcoming experiments.
- Published
- 2020
- Full Text
- View/download PDF
3. The spin structure of the nucleon.
- Author
-
Deur A, Brodsky SJ, and de Téramond GF
- Abstract
We review the present understanding of the spin structure of protons and neutrons, the fundamental building blocks of nuclei collectively known as nucleons. The field of nucleon spin provides a critical window for testing Quantum Chromodynamics (QCD), the gauge theory of the strong interactions, since it involves fundamental aspects of hadron structure which can be probed in detail in experiments, particularly deep inelastic lepton scattering on polarized targets. QCD was initially probed in high energy deep inelastic lepton scattering with unpolarized beams and targets. With time, interest shifted from testing perturbative QCD to illuminating the nucleon structure itself. In fact, the spin degrees of freedom of hadrons provide an essential and detailed verification of both perturbative and nonperturbative QCD dynamics. Nucleon spin was initially thought of coming mostly from the spin of its quark constituents, based on intuition from the parton model. However, the first experiments showed that this expectation was incorrect. It is now clear that nucleon physics is much more complex, involving quark orbital angular momenta as well as gluonic and sea quark contributions. Thus, the nucleon spin structure remains a most active aspect of QCD research, involving important advances such as the developments of generalized parton distributions (GPD) and transverse momentum distributions (TMD). Elastic and inelastic lepton-proton scattering, as well as photoabsorption experiments provide various ways to investigate non-perturbative QCD. Fundamental sum rules-such as the Bjorken sum rule for polarized photoabsorption on polarized nucleons-are also in the non-perturbative domain. This realization triggered a vigorous program to link the low energy effective hadronic description of the strong interactions to fundamental quarks and gluon degrees of freedom of QCD. This has also led to advances in lattice gauge theory simulations of QCD and to the development of holographic QCD ideas based on the AdS/CFT or gauge/gravity correspondence, a novel approach providing a well-founded semiclassical approximation to QCD. Any QCD-based model of the nucleon's spin and dynamics must also successfully account for the observed spectroscopy of hadrons. Analytic calculations of the hadron spectrum, a long sought goal of QCD research, have now being realized using light-front holography and superconformal quantum mechanics, a formalism consistent with the results from nucleon spin studies. We begin this review with a phenomenological description of nucleon structure in general and of its spin structure in particular, aimed to engage non-specialist readers. Next, we discuss the nucleon spin structure at high energy, including topics such as Dirac's front form and light-front quantization which provide a frame-independent, relativistic description of hadron structure and dynamics, the derivation of spin sum rules, and a direct connection to the QCD Lagrangian. We then discuss experimental and theoretical advances in the nonperturbative domain-in particular the development of light-front holographic QCD and superconformal quantum mechanics, their predictions for the spin content of nucleons, the computation of PDFs and of hadron masses.
- Published
- 2019
- Full Text
- View/download PDF
4. Universality of Generalized Parton Distributions in Light-Front Holographic QCD.
- Author
-
de Téramond GF, Liu T, Sufian RS, Dosch HG, Brodsky SJ, and Deur A
- Abstract
The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function w(x) which incorporates Regge behavior at small x and inclusive counting rules at x→1. A simple ansatz for w(x) that fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.
- Published
- 2018
- Full Text
- View/download PDF
5. Comment on "New Limits on Intrinsic Charm in the Nucleon from Global Analysis of Parton Distributions".
- Author
-
Brodsky SJ and Gardner S
- Published
- 2016
- Full Text
- View/download PDF
6. Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review.
- Author
-
Wu XG, Ma Y, Wang SQ, Fu HB, Ma HH, Brodsky SJ, and Mojaza M
- Abstract
A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme--this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the 'principle of maximum conformality' (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the 'principle of minimum sensitivity' (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R(e+e-) and [Formula: see text] up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on the choice of initial scale is highly suppressed even for low-order predictions. Thus the PMC, based on the standard RGI, has a rigorous foundation; it eliminates an unnecessary systematic error for high precision pQCD predictions and can be widely applied to virtually all high-energy hadronic processes, including multi-scale problems.
- Published
- 2015
- Full Text
- View/download PDF
7. Dynamical picture for the formation and decay of the exotic XYZ mesons.
- Author
-
Brodsky SJ, Hwang DS, and Lebed RF
- Abstract
We present a new dynamical picture that identifies the formation of the exotic c[over ¯]c-containing states XYZ with the confinement-induced hadronization of a rapidly separating pair of a compact diquark and antidiquark. This picture combines the advantages of diquark-based models, which can accommodate much of the known XYZ spectrum, with the experimental fact that such states are both relatively narrow and are produced promptly. It also naturally explains the preference of some of the exotic states to decay to ψ(2S), rather than J/ψ, in terms of a simple wave-function overlap effect.
- Published
- 2014
- Full Text
- View/download PDF
8. Systematic all-orders method to eliminate renormalization-scale and scheme ambiguities in perturbative QCD.
- Author
-
Mojaza M, Brodsky SJ, and Wu XG
- Abstract
We introduce a generalization of the conventional renormalization schemes used in dimensional regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative QCD predictions, exposes the general pattern of nonconformal {β(i)} terms, and reveals a special degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the argument of the running coupling order by order in perturbative QCD in a form which can be readily automatized. The new method satisfies all of the principles of the renormalization group and eliminates an unnecessary source of systematic error.
- Published
- 2013
- Full Text
- View/download PDF
9. Eliminating the renormalization scale ambiguity for top-pair production using the principle of maximum conformality.
- Author
-
Brodsky SJ and Wu XG
- Abstract
It is conventional to choose a typical momentum transfer of the process as the renormalization scale and take an arbitrary range to estimate the uncertainty in the QCD prediction. However, predictions using this procedure depend on the renormalization scheme, leave a nonconvergent renormalon perturbative series, and moreover, one obtains incorrect results when applied to QED processes. In contrast, if one fixes the renormalization scale using the principle of maximum conformality (PMC), all nonconformal {β(i)} terms in the perturbative expansion series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC scale μ(R)(PMC) and the resulting finite-order PMC prediction are both to high accuracy independent of the choice of initial renormalization scale μ(R)(init), consistent with renormalization group invariance. As an application, we apply the PMC procedure to obtain next-to-next-to-leading-order (NNLO) predictions for the tt-pair production at the Tevatron and LHC colliders. The PMC prediction for the total cross section σ(tt) agrees well with the present Tevatron and LHC data. We also verify that the initial scale independence of the PMC prediction is satisfied to high accuracy at the NNLO level: the total cross section remains almost unchanged even when taking very disparate initial scales μ(R)(init) equal to m(t), 20m(t), and √s. Moreover, after PMC scale setting, we obtain A(FB)(tt)≃12.5%, A(FB)(pp)≃8.28% and A(FB)(tt)(M(tt)>450 GeV)≃35.0%. These predictions have a 1σ deviation from the present CDF and D0 measurements; the large discrepancy of the top quark forward-backward asymmetry between the standard model estimate and the data are, thus, greatly reduced.
- Published
- 2012
- Full Text
- View/download PDF
10. Direct probes of linearly polarized gluons inside unpolarized hadrons.
- Author
-
Boer D, Brodsky SJ, Mulders PJ, and Pisano C
- Abstract
We show that linearly polarized gluons inside unpolarized hadrons can be directly probed in jet or heavy quark pair production in electron-hadron collisions. We discuss the simplest cos2ϕ asymmetries and estimate their maximal value, concluding that measurements of the unknown linearly polarized gluon distribution in the proton should be feasible in future Electron-Ion Collider or Large Hadron electron Collider experiments. Analogous asymmetries in hadron-hadron collisions suffer from factorization breaking contributions and would allow us to quantify the importance of initial- and final-state interactions., (© 2011 American Physical Society)
- Published
- 2011
- Full Text
- View/download PDF
11. Higher-twist dynamics in large transverse momentum hadron production.
- Author
-
Arleo F, Brodsky SJ, Hwang DS, and Sickles AM
- Abstract
A scaling law analysis of the world data on inclusive large-p(⊥) hadron production in hadronic collisions is carried out. Significant deviations from leading-twist perturbative QCD predictions at next-to-leading order are observed, particularly at high x(⊥)=2p(⊥)/sqrt[s]. In contrast, the production of prompt photons and jets exhibits near-conformal scaling behavior in agreement with leading-twist expectations. These results indicate a non-negligible contribution of higher-twist processes in large-p(⊥) hadron production, where the hadron is produced directly in the hard subprocess, rather than by quark and gluon fragmentation. Predictions for the scaling exponents at RHIC and LHC are given. Triggering on isolated large-p(⊥) hadron production will enhance the higher-twist processes. We also note that the use of isolated hadrons as a signal for new physics can be affected by the presence of direct hadron production.
- Published
- 2010
- Full Text
- View/download PDF
12. Production of the smallest QED atom: true microonium (micro+micro-).
- Author
-
Brodsky SJ and Lebed RF
- Abstract
The "true microonium" (micro+micro-) and "true tauonium" (tau+tau-) bound states are not only the heaviest, but also the most compact pure QED systems. The rapid weak decay of the tau makes the observation of true tauonium difficult. However, as we show, the production and study of true microonium is possible at modern electron-positron colliders.
- Published
- 2009
- Full Text
- View/download PDF
13. Light-front holography: a first approximation to QCD.
- Author
-
de Téramond GF and Brodsky SJ
- Abstract
Starting from the Hamiltonian equation of motion in QCD, we identify an invariant light-front coordinate zeta which allows the separation of the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schrödinger equation for QCD which determines the eigenspectrum and the light-front wave functions of hadrons for general spin and orbital angular momentum. This light-front wave equation is equivalent to the equations of motion which describe the propagation of spin-J modes on anti-de Sitter (AdS) space.
- Published
- 2009
- Full Text
- View/download PDF
14. Effect of orbital angular momentum on valence-quark helicity distributions.
- Author
-
Avakian H, Brodsky SJ, Deur A, and Yuan F
- Abstract
We study the quark helicity distributions at large x in perturbative QCD, taking into account contributions from the valence Fock states of the nucleon which have nonzero orbital angular momentum. We find that the quark orbital angular momentum contributes a large logarithm to the negative helicity quark distributions in addition to its power behavior, scaling as (1-x){5}log{2}(1-x) in the limit of x-->1. Our analysis shows that the ratio of the polarized over unpolarized down quark distributions, Deltad/d, will still approach 1 in this limit. By comparing with the experimental data, we find that this ratio should cross zero at x approximately 0.75.
- Published
- 2007
- Full Text
- View/download PDF
15. Hadronic spectra and light-front wave functions in holographic QCD.
- Author
-
Brodsky SJ and de Téramond GF
- Abstract
We show how the string amplitude phi(z) defined on the fifth dimension in AdS5 space can be precisely mapped to the light-front wave functions of hadrons in physical space-time. We find an exact correspondence between the holographic variable z and an impact variable zeta, which represents the measure of transverse separation of the constituents within the hadrons. In addition, we derive effective four dimensional Schrödinger equations for the bound states of massless quarks and gluons which exactly reproduce the anti-de Sitter conformal field theory results and give a realistic description of the light-quark meson and baryon spectrum as well as the form factors for space-like Q2. Only one parameter which sets the mass scale, lambda(QCD), is introduced.
- Published
- 2006
- Full Text
- View/download PDF
16. Hadronic spectrum of a holographic dual of QCD.
- Author
-
de Téramond GF and Brodsky SJ
- Abstract
We compute the spectrum of light hadrons in a holographic dual of QCD defined on AdS5 x S5 which has conformal behavior at short distances and confinement at large interquark separation. Specific hadrons are identified by the correspondence of string modes with the dimension of the interpolating operator of the hadron's valence Fock state. Higher orbital excitations are matched quanta to quanta with fluctuations about the AdS background. Since only one parameter, the QCD scale Lambda(QCD), is used, the agreement with the pattern of physical states is remarkable. In particular, the ratio of delta to nucleon trajectories is determined by the ratio of zeros of Bessel functions.
- Published
- 2005
- Full Text
- View/download PDF
17. Constraints on proton structure from precision atomic-physics measurements.
- Author
-
Brodsky SJ, Carlson CE, Hiller JR, and Hwang DS
- Abstract
Ground-state hyperfine splittings in hydrogen and muonium are very well measured. Their difference, after correcting for magnetic moment and reduced mass effects, is due solely to proton structure-the large QED contributions for a pointlike nucleus essentially cancel. The rescaled hyperfine difference depends on the Zemach radius, a fundamental measure of the proton, computed as an integral over a product of electric and magnetic proton form factors. The determination of the Zemach radius, (1.019+/-0.016) fm, from atomic physics tightly constrains fits to accelerator measurements of proton form factors. Conversely, we can use muonium data to extract an experimental value for QED corrections to hydrogenic hyperfine data. There is a significant discrepancy between measurement and theory, in the same direction as a corresponding discrepancy in positronium.
- Published
- 2005
- Full Text
- View/download PDF
18. Hunting for glueballs in electron-positron annihilation.
- Author
-
Brodsky SJ, Goldhaber AS, and Lee J
- Abstract
We calculate the cross section for the exclusive production of J(PC)=0(++) glueballs G0 in association with the J/psi in e(+)e(-) annihilation using the perturbative QCD factorization formalism. The required long-distance matrix element for the glueball is bounded by CUSB data from a search for resonances in radiative Upsilon decay. The cross section for e(+)e(-)-->J/psi+G0 at sqrt[s]=10.6 GeV is similar to exclusive charmonium-pair production e(+)e(-)-->J/psi+h for h=eta(c) and chi(c0), and is larger by a factor of 2 than that for h=eta(c)(2S). As the subprocesses gamma(*)-->(cc)(cc) and gamma(*)-->(cc)(gg) are of the same nominal order in perturbative QCD, it is possible that some portion of the anomalously large signal observed by Belle in e(+)e(-)-->J/psiX may actually be due to the production of charmonium-glueball J/psiG(J) pairs.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.