1. Dynamic mechanical analysis of alginate/gellan hydrogels under controlled conditions relevant to environmentally sensitive applications.
- Author
-
Segovia-Gutiérrez JP, Agudo JAR, Binder N, Weidler PG, Kirschhöfer F, Fink-Straube C, Utz J, and Germann N
- Abstract
Hydrogels are natural/synthetic polymer-based materials with a large percentage of water content, usually above 80 %, and are suitable for many application fields such as wearable sensors, biomedicine, cosmetics, agriculture, etc. However, their performance is susceptible to environmental changes in temperature, relative humidity, and mechanical deformation due to their aqueous and soft nature. We investigate the mechanical response of both filled and unfilled alginate/gellan hydrogels using a combined axial-torsional rheometric approach with cylindrical samples of large length/diameter ratio under controlled temperature and relative humidity. Dynamic Mechanical Analysis (DMA) is performed on the same specimen in both torsion and extension under identical experimental conditions. This rheometric approach ensures consistent initial and boundary conditions, which are essential for a reliable estimation of viscoelastic moduli G* and E*, and their dependence on temperature, frequency, and relative humidity. Our findings indicate that humidity critically affects the mechanical response of the material due to sample volume shrinkage, necessitating corrections to the viscoelastic moduli. We also find temperature plays a role only at low/medium relative humidity values. The inclusion of fillers leads to a modest increase in the elasticity of the hydrogel, probably due to restricted water diffusion out of the sample. In connection with the latest, unfilled samples in breaking tests present only slippage due to twist-induced surface water excess, opposite to breakage events shown by filled samples, probably linked to restricted water diffusion., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: There is no conflict of interest to report. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF