1. Deep learning in Cobb angle automated measurement on X-rays: a systematic review and meta-analysis.
- Author
-
Zhu Y, Yin X, Chen Z, Zhang H, Xu K, Zhang J, and Wu N
- Abstract
Purpose: This study aims to provide an overview of different deep learning algorithms (DLAs), identify the limitations, and summarize potential solutions to improve the performance of DLAs., Methods: We reviewed eligible studies on DLAs for automated Cobb angle estimation on X-rays and conducted a meta-analysis. A systematic literature search was conducted in six databases up until September 2023. Our meta-analysis included an evaluation of reported circular mean absolute error (CMAE) from the studies, as well as a subgroup analysis of implementation strategies. Risk of bias was assessed using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). This study was registered in PROSPERO prior to initiation (CRD42023403057)., Results: We identified 120 articles from our systematic search (n = 3022), eventually including 50 studies in the systematic review and 17 studies in the meta-analysis. The overall estimate for CMAE was 2.99 (95% CI 2.61-3.38), with high heterogeneity (94%, p < 0.01). Segmentation-based methods showed greater accuracy (p < 0.01), with a CMAE of 2.40 (95% CI 1.85-2.95), compared to landmark-based methods, which had a CMAE of 3.31 (95% CI 2.89-3.72)., Conclusions: According to our limited meta-analysis results, DLAs have shown relatively high accuracy for automated Cobb angle measurement. In terms of CMAE, segmentation-based methods may perform better than landmark-based methods. We also summarized potential ways to improve model design in future studies. It is important to follow quality guidelines when reporting on DLAs., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF