128 results on '"Cherchi S."'
Search Results
2. Loss of function in protein Z (PROZ) is associated with increased risk of ischemic stroke in the UK Biobank.
- Author
-
Haj AK, Ryu J, Jurgens SJ, Chaudhry S, Koyama S, Wang X, Choi SH, Hou C, Sanna-Cherchi S, Anderson CD, Ellinor PT, and Bendapudi PK
- Abstract
Background: The vitamin K-dependent coagulation factor protein Z (PZ), encoded by the PROZ gene, is canonically considered to have anticoagulant effects through negative regulation of factor Xa. Paradoxically, higher circulating PZ concentrations have repeatedly been associated with an elevated risk of acute ischemic stroke., Objectives: We performed a large-scale genetic association study to examine the relationship between germline genetic variants in PROZ and the risk of ischemic stroke., Methods: Using whole-exome sequencing and clinical data for 416 711 participants in the UK Biobank (UKB), we identified individuals with rare (minor allele frequency ≤0.1%) putatively function-altering variants in PROZ. Using Firth's logistic regression and controlling for known stroke risk factors, we evaluated the association between variant carrier status and noncardioembolic ischemic stroke (NCEIS). Additionally, we evaluated differences in the plasma levels of 1472 proteins between PROZ variant carriers and noncarriers in a subset of 48 893 UKB participants., Results: After accounting for missing data, qualifying variants in PROZ were identified in 414 UKB participants (99.0% heterozygous). Variant carriers had a significantly increased risk of NCEIS (odds ratio, 2.34; 95% CI, 1.15-4.13; P = .02) but not of venous thromboembolism, myocardial infarction, or peripheral artery disease. Plasma proteomics analysis revealed that PROZ variant carriers had significantly elevated levels of 2 proteins related to the response to cerebral ischemia, peroxiredoxins 1 and 6 (PRDX1: fold change, 1.83; P = 1.3 × 10
-5 ; PRDX6: fold change, 1.78; P = 9.6 × 10-10 )., Conclusion: Lifelong exposure to decreased PZ levels confers a significantly increased risk of NCEIS, consistent with the role of PZ as an anticoagulant factor., Competing Interests: Declaration of competing interests P.K.B. has received consulting fees from Alexion Pharmaceuticals, Takeda Pharmaceuticals, and Verve Pharmaceuticals. He serves on scientific advisory boards for Takeda Pharmaceuticals. P.T.E. receives sponsored research support from Bayer AG, IBM Research, Bristol Myers Squibb, Pfizer, and Novo Nordisk; he has also served on advisory boards or consulted for Bayer AG. All other authors have no disclosures to report., (Copyright © 2024 International Society on Thrombosis and Haemostasis. Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
3. Natural History and Clinicopathological Associations of TRPC6-Associated Podocytopathy.
- Author
-
Wooden B, Beenken A, Martinelli E, Saida K, Knob AL, Ke J, Pisani I, Jin G, Lane B, Mitrotti A, Colby E, Lim TY, Guglielmi F, Osborne AJ, Ahram DF, Wang C, Armand F, Zanoni F, Bomback AS, Delsante M, Appel GB, Ferrari MRA, Martino J, Sahdeo S, Breckenridge D, Petrovski S, Paul DS, Hall G, Magistroni R, Murtas C, Feriozzi S, Rampino T, Esposito P, Helmuth ME, Sampson MG, Kretzler M, Kiryluk K, Shril S, Gesualdo L, Maggiore U, Fiaccadori E, Gbadegesin R, Santoriello D, D'Agati VD, Saleem MA, Gharavi AG, Hildebrandt F, Pollak MR, Goldstein DB, and Sanna-Cherchi S
- Published
- 2024
- Full Text
- View/download PDF
4. Pre-transplant anti-nephrin antibodies are specific predictors of recurrent diffuse podocytopathy in the kidney allograft.
- Author
-
Batal I, Watts AJB, Gibier JB, Hamroun A, Top I, Provot F, Keller K, Ye X, Fernandez HE, Leal R, Andeen NK, Crew RJ, Dube GK, Vasilescu ER, Ratner LE, Bowman N, Bomback AS, Sanna-Cherchi S, Kiryluk K, and Weins A
- Subjects
- Adult, Female, Humans, Male, Middle Aged, Autoantibodies blood, Autoantibodies immunology, Membrane Proteins immunology, Podocytes immunology, Podocytes pathology, Recurrence, Allografts immunology, Allografts pathology, Kidney Transplantation adverse effects
- Published
- 2024
- Full Text
- View/download PDF
5. Increased risk of kidney failure in patients with genetic kidney disorders.
- Author
-
Elliott MD, Vena N, Marasa M, Cocchi E, Bheda S, Bogyo K, Shang N, Zanoni F, Verbitsky M, Wang C, Kolupaeva V, Jin G, Sofer M, Gras Pena R, Canetta PA, Bomback AS, Guay-Woodford LM, Hou J, Gillespie BW, Robinson BM, Klein JB, Rheault MN, Smoyer WE, Greenbaum LA, Holzman LB, Falk RJ, Parsa A, Sanna-Cherchi S, Mariani LH, Kretzler M, Kiryluk K, and Gharavi AG
- Subjects
- Humans, Male, Female, Adult, Middle Aged, Risk Factors, Child, Retrospective Studies, Adolescent, Prospective Studies, Kidney Diseases genetics, Apolipoprotein L1 genetics, Renal Insufficiency genetics, Glomerular Filtration Rate
- Abstract
BACKGROUNDIt is unknown whether the risk of kidney disease progression and failure differs between patients with and without genetic kidney disorders.METHODSThree cohorts were evaluated: the prospective Cure Glomerulonephropathy Network (CureGN) and 2 retrospective cohorts from Columbia University, including 5,727 adults and children with kidney disease from any etiology who underwent whole-genome or exome sequencing. The effects of monogenic kidney disorders and APOL1 kidney-risk genotypes on the risk of kidney failure, estimated glomerular filtration rate (eGFR) decline, and disease remission rates were evaluated along with diagnostic yields and the impact of American College of Medical Genetics secondary findings (ACMG SFs).RESULTSMonogenic kidney disorders were identified in 371 patients (6.5%), high-risk APOL1 genotypes in 318 (5.5%), and ACMG SFs in 100 (5.2%). Family history of kidney disease was the strongest predictor of monogenic disorders. After adjustment for traditional risk factors, monogenic kidney disorders were associated with an increased risk of kidney failure (hazard ratio [HR] = 1.72), higher rate of eGFR decline (-3.06 vs. 0.25 mL/min/1.73 m2/year), and lower risk of complete remission (odds ratioNot achieving CR = 5.25). High-risk APOL1 genotypes were associated with an increased risk of kidney failure (HR = 1.67) and faster eGFR decline (-2.28 vs. 0.25 mL/min/1.73 m2), replicating prior findings. ACMG SFs were not associated with personal or family history of associated diseases, but were predicted to impact care in 70% of cases.CONCLUSIONSMonogenic kidney disorders were associated with an increased risk of kidney failure, faster eGFR decline, and lower rates of complete remission, suggesting opportunities for early identification and intervention based on molecular diagnosis.TRIAL REGISTRATIONNA.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases grants U24DK100845 (formerly UM1DK100845), U01DK100846 (formerly UM1DK100846), U01DK100876 (formerly UM1DK100876), U01DK100866 (formerly UM1DK100866), U01DK100867 (formerly UM1DK100867), U24DK100845, DK081943, RC2DK116690, 2U01DK100876, 1R01DK136765, 5R01DK082753, and RC2-DK122397; NephCure Kidney International; Department of Defense Research Awards PR201425, W81XWH-16-1-0451, and W81XWH-22-1-0966; National Center for Advancing Translational Sciences grant UL1TR001873; National Library of Medicine grant R01LM013061; National Human Genome Research Institute grant 2U01HG008680.
- Published
- 2024
- Full Text
- View/download PDF
6. Mendelian Randomization Unveils Drug Targets for IgA Nephropathy.
- Author
-
Khan A, Lim TY, and Sanna-Cherchi S
- Subjects
- Humans, Glomerulonephritis, IGA genetics, Glomerulonephritis, IGA drug therapy, Mendelian Randomization Analysis
- Published
- 2024
- Full Text
- View/download PDF
7. Thrombosis risk in single- and double-heterozygous carriers of factor V Leiden and prothrombin G20210A in FinnGen and the UK Biobank.
- Author
-
Ryu J, Rämö JT, Jurgens SJ, Niiranen T, Sanna-Cherchi S, Bauer KA, Haj A, Choi SH, Palotie A, Daly M, Ellinor PT, and Bendapudi PK
- Subjects
- Humans, Female, Male, Middle Aged, United Kingdom epidemiology, Aged, Risk Factors, Venous Thromboembolism genetics, Venous Thromboembolism epidemiology, Adult, Thrombosis genetics, Thrombosis epidemiology, Thrombosis etiology, Genetic Predisposition to Disease, Genotype, Polymorphism, Single Nucleotide, UK Biobank, Prothrombin genetics, Factor V genetics, Heterozygote, Biological Specimen Banks
- Abstract
Abstract: The factor V Leiden (FVL; rs6025) and prothrombin G20210A (PTGM; rs1799963) polymorphisms are 2 of the most well-studied genetic risk factors for venous thromboembolism (VTE). However, double heterozygosity (DH) for FVL and PTGM remains poorly understood, with previous studies showing marked disagreement regarding thrombosis risk conferred by the DH genotype. Using multidimensional data from the UK Biobank (UKB) and FinnGen biorepositories, we evaluated the clinical impact of DH carrier status across 937 939 individuals. We found that 662 participants (0.07%) were DH carriers. After adjustment for age, sex, and ancestry, DH individuals experienced a markedly elevated risk of VTE compared with wild-type individuals (odds ratio [OR] = 5.24; 95% confidence interval [CI], 4.01-6.84; P = 4.8 × 10-34), which approximated the risk conferred by FVL homozygosity. A secondary analysis restricted to UKB participants (N = 445 144) found that effect size estimates for the DH genotype remained largely unchanged (OR = 4.53; 95% CI, 3.42-5.90; P < 1 × 10-16) after adjustment for commonly cited VTE risk factors, such as body mass index, blood type, and markers of inflammation. In contrast, the DH genotype was not associated with a significantly higher risk of any arterial thrombosis phenotype, including stroke, myocardial infarction, and peripheral artery disease. In summary, we leveraged population-scale genomic data sets to conduct, to our knowledge, the largest study to date on the DH genotype and were able to establish far more precise effect size estimates than previously possible. Our findings indicate that the DH genotype may occur as frequently as FVL homozygosity and may confer a similarly increased risk of VTE., (© 2024 American Society of Hematology. Published by Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.)
- Published
- 2024
- Full Text
- View/download PDF
8. Risk of meningomyelocele mediated by the common 22q11.2 deletion.
- Author
-
Vong KI, Lee S, Au KS, Crowley TB, Capra V, Martino J, Haller M, Araújo C, Machado HR, George R, Gerding B, James KN, Stanley V, Jiang N, Alu K, Meave N, Nidhiry AS, Jiwani F, Tang I, Nisal A, Jhamb I, Patel A, Patel A, McEvoy-Venneri J, Barrows C, Shen C, Ha YJ, Howarth R, Strain M, Ashley-Koch AE, Azam M, Mumtaz S, Bot GM, Finnell RH, Kibar Z, Marwan AI, Melikishvili G, Meltzer HS, Mutchinick OM, Stevenson DA, Mroczkowski HJ, Ostrander B, Schindewolf E, Moldenhauer J, Zackai EH, Emanuel BS, Garcia-Minaur S, Nowakowska BA, Stevenson RE, Zaki MS, Northrup H, McNamara HK, Aldinger KA, Phelps IG, Deng M, Glass IA, Morrow B, McDonald-McGinn DM, Sanna-Cherchi S, Lamb DJ, and Gleeson JG
- Subjects
- Animals, Female, Humans, Male, Mice, DiGeorge Syndrome genetics, Exome Sequencing, Folic Acid administration & dosage, Folic Acid Deficiency complications, Folic Acid Deficiency genetics, Penetrance, Spinal Dysraphism genetics, Risk, Adaptor Proteins, Signal Transducing genetics, Chromosome Deletion, Chromosomes, Human, Pair 22 genetics, Meningomyelocele epidemiology, Meningomyelocele genetics
- Abstract
Meningomyelocele is one of the most severe forms of neural tube defects (NTDs) and the most frequent structural birth defect of the central nervous system. We assembled the Spina Bifida Sequencing Consortium to identify causes. Exome and genome sequencing of 715 parent-offspring trios identified six patients with chromosomal 22q11.2 deletions, suggesting a 23-fold increased risk compared with the general population. Furthermore, analysis of a separate 22q11.2 deletion cohort suggested a 12- to 15-fold increased NTD risk of meningomyelocele. The loss of Crkl , one of several neural tube-expressed genes within the minimal deletion interval, was sufficient to replicate NTDs in mice, where both penetrance and expressivity were exacerbated by maternal folate deficiency. Thus, the common 22q11.2 deletion confers substantial meningomyelocele risk, which is partially alleviated by folate supplementation.
- Published
- 2024
- Full Text
- View/download PDF
9. The expanded spectrum of human disease associated with GREB1L likely includes complex congenital heart disease.
- Author
-
Zhao E, Bomback M, Khan A, Krishna Murthy S, Solowiejczyk D, Vora NL, Gilmore KL, Giordano JL, Wapner RJ, Sanna-Cherchi S, Lyford A, Jelin AC, Gharavi AG, and Hays T
- Subjects
- Female, Humans, Kidney abnormalities, Neoplasm Proteins genetics, Heart Defects, Congenital epidemiology, Heart Defects, Congenital genetics, Kidney Diseases congenital, Urogenital Abnormalities genetics
- Abstract
Objective: GREB1L has been linked prenatally to Potter's sequence, as well as less severe anomalies of the kidney, uterus, inner ear, and heart. The full phenotypic spectrum is unknown. The purpose of this study was to characterize known and novel pre- and postnatal phenotypes associated with GREB1L., Methods: We solicited cases from the Fetal Sequencing Consortium, screened a population-based genomic database, and conducted a comprehensive literature search to identify disease cases associated with GREB1L. We present a detailed phenotypic spectrum and molecular changes., Results: One hundred twenty-seven individuals with 51 unique pathogenic or likely pathogenic GREB1L variants were identified. 24 (47%) variants were associated with isolated kidney anomalies, 19 (37%) with anomalies of multiple systems, including one case of hypoplastic left heart syndrome, five (10%) with isolated sensorineural hearing loss, two (4%) with isolated uterine agenesis; and one (2%) with isolated tetralogy of Fallot., Conclusion: GREB1L may cause complex congenital heart disease (CHD) in humans. Clinicians should consider GREB1L testing in the setting of CHD, and cardiac screening in the setting of GREB1L variants., (© 2024 John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
10. APOL1 Genotyping Is Incomplete without Testing for the Protective M1 Modifier p.N264K Variant.
- Author
-
Gbadegesin R, Martinelli E, Gupta Y, Friedman DJ, Sampson MG, Pollak MR, and Sanna-Cherchi S
- Abstract
Competing Interests: M.R.P. and D.J.F. report research support from Vertex. The remaining authors declare no competing interests.
- Published
- 2024
- Full Text
- View/download PDF
11. Copy number variation analysis in 138 families with steroid-resistant nephrotic syndrome identifies causal homozygous deletions in PLCE1 and NPHS2 in two families.
- Author
-
Pantel D, Mertens ND, Schneider R, Hölzel S, Kari JA, Desoky SE, Shalaby MA, Lim TY, Sanna-Cherchi S, Shril S, and Hildebrandt F
- Subjects
- Adult, Child, Humans, Young Adult, DNA Copy Number Variations, DNA Mutational Analysis, Genetic Predisposition to Disease, Homozygote, Mutation, Sequence Deletion, Nephrotic Syndrome drug therapy, Nephrotic Syndrome genetics, Nephrotic Syndrome congenital
- Abstract
Background: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of kidney failure in children and adults under the age of 20 years. Previously, we were able to detect by exome sequencing (ES) a known monogenic cause of SRNS in 25-30% of affected families. However, ES falls short of detecting copy number variants (CNV). Therefore, we hypothesized that causal CNVs could be detected in a large SRNS cohort., Methods: We performed genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on a cohort of 138 SRNS families, in whom we previously did not identify a genetic cause through ES. We evaluated ES and CNV data for variants in 60 known SRNS genes and in 13 genes in which variants are known to cause a phenocopy of SRNS. We applied previously published, predefined criteria for CNV evaluation., Results: We detected a novel CNV in two genes in 2 out of 138 families (1.5%). The 9,673 bp homozygous deletion in PLCE1 and the 6,790 bp homozygous deletion in NPHS2 were confirmed across the breakpoints by PCR and Sanger sequencing., Conclusions: We confirmed that CNV analysis can identify the genetic cause in SRNS families that remained unsolved after ES. Though the rate of detected CNVs is minor, CNV analysis can be used when there are no other genetic causes identified. Causative CNVs are less common in SRNS than in other monogenic kidney diseases, such as congenital anomalies of the kidneys and urinary tract, where the detection rate was 5.3%. A higher resolution version of the Graphical abstract is available as Supplementary information., (© 2023. The Author(s), under exclusive licence to International Pediatric Nephrology Association.)
- Published
- 2024
- Full Text
- View/download PDF
12. First Identification of Trichinella pseudospiralis in a Golden Jackal ( Canis aureus ) in Romania.
- Author
-
Marin AM, Popovici DC, Marucci G, Cherchi S, and Mederle N
- Abstract
Trichinella spp. are etiological zoonotic agents that spread throughout the world and affect mammals, birds, and reptiles. Within this genus, Trichinella pseudospiralis is the only recognized non-encapsulated species known to infect mammals and birds. This species has been reported in the majority of European countries, and the real epidemiological scenario of this species remains to be defined because its detection in mammals is much lower than that of the capsulated species. The aim of this study was to examine the presence of Trichinella larvae isolated from the muscles of a jackal from the hunting fund of 36 Murfatlar, Constanta County, Romania. The muscle samples were examined by artificial digestion, and the larvae were identified at the species level by multiplex PCR. The presence of larvae belonging to T. pseudospiralis , a species more frequently reported in carnivorous birds, was observed. This study describes the first identification of T. pseudospiralis in a jackal. The results suggest that there is an urgent need to investigate which species of mammals and/or birds act as reservoirs for this zoonotic nematode in Romania.
- Published
- 2023
- Full Text
- View/download PDF
13. Mouse and human studies support DSTYK loss of function as a low-penetrance and variable expressivity risk factor for congenital urinary tract anomalies.
- Author
-
Martino J, Liu Q, Vukojevic K, Ke J, Lim TY, Khan A, Gupta Y, Perez A, Yan Z, Milo Rasouly H, Vena N, Lippa N, Giordano JL, Saraga M, Saraga-Babic M, Westland R, Bodria M, Piaggio G, Bendapudi PK, Iglesias AD, Wapner RJ, Tasic V, Wang F, Ionita-Laza I, Ghiggeri GM, Kiryluk K, Sampogna RV, Mendelsohn CL, D'Agati VD, Gharavi AG, and Sanna-Cherchi S
- Subjects
- Animals, Mice, Humans, Penetrance, Mice, Inbred C3H, Mice, Inbred C57BL, Kidney abnormalities, Risk Factors, Receptor-Interacting Protein Serine-Threonine Kinases genetics, Urinary Tract, Urogenital Abnormalities genetics, Epilepsy genetics
- Abstract
Purpose: Previous work identified rare variants in DSTYK associated with human congenital anomalies of the kidney and urinary tract (CAKUT). Here, we present a series of mouse and human studies to clarify the association, penetrance, and expressivity of DSTYK variants., Methods: We phenotypically characterized Dstyk knockout mice of 3 separate inbred backgrounds and re-analyzed the original family segregating the DSTYK c.654+1G>A splice-site variant (referred to as "SSV" below). DSTYK loss of function (LOF) and SSVs were annotated in individuals with CAKUT, epilepsy, or amyotrophic lateral sclerosis vs controls. A phenome-wide association study analysis was also performed using United Kingdom Biobank (UKBB) data., Results: Results demonstrate ∼20% to 25% penetrance of obstructive uropathy, at least, in C57BL/6J and FVB/NJ Dstyk
-/- mice. Phenotypic penetrance increased to ∼40% in C3H/HeJ mutants, with mild-to-moderate severity. Re-analysis of the original family segregating the rare SSV showed low penetrance (43.8%) and no alternative genetic causes for CAKUT. LOF DSTYK variants burden showed significant excess for CAKUT and epilepsy vs controls and an exploratory phenome-wide association study supported association with neurological disorders., Conclusion: These data support causality for DSTYK LOF variants and highlights the need for large-scale sequencing studies (here >200,000 cases) to accurately assess causality for genes and variants to lowly penetrant traits with common population prevalence., Competing Interests: Conflict of Interest All authors declare no conflicts of interest., (Copyright © 2023 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
14. Strong protective effect of the APOL1 p.N264K variant against G2-associated focal segmental glomerulosclerosis and kidney disease.
- Author
-
Gupta Y, Friedman DJ, McNulty MT, Khan A, Lane B, Wang C, Ke J, Jin G, Wooden B, Knob AL, Lim TY, Appel GB, Huggins K, Liu L, Mitrotti A, Stangl MC, Bomback A, Westland R, Bodria M, Marasa M, Shang N, Cohen DJ, Crew RJ, Morello W, Canetta P, Radhakrishnan J, Martino J, Liu Q, Chung WK, Espinoza A, Luo Y, Wei WQ, Feng Q, Weng C, Fang Y, Kullo IJ, Naderian M, Limdi N, Irvin MR, Tiwari H, Mohan S, Rao M, Dube GK, Chaudhary NS, Gutiérrez OM, Judd SE, Cushman M, Lange LA, Lange EM, Bivona DL, Verbitsky M, Winkler CA, Kopp JB, Santoriello D, Batal I, Pinheiro SVB, Oliveira EA, Simoes E Silva AC, Pisani I, Fiaccadori E, Lin F, Gesualdo L, Amoroso A, Ghiggeri GM, D'Agati VD, Magistroni R, Kenny EE, Loos RJF, Montini G, Hildebrandt F, Paul DS, Petrovski S, Goldstein DB, Kretzler M, Gbadegesin R, Gharavi AG, Kiryluk K, Sampson MG, Pollak MR, and Sanna-Cherchi S
- Subjects
- Humans, Apolipoprotein L1 genetics, Genetic Predisposition to Disease, Risk Factors, Genotype, Apolipoproteins genetics, Glomerulosclerosis, Focal Segmental genetics
- Abstract
African Americans have a significantly higher risk of developing chronic kidney disease, especially focal segmental glomerulosclerosis -, than European Americans. Two coding variants (G1 and G2) in the APOL1 gene play a major role in this disparity. While 13% of African Americans carry the high-risk recessive genotypes, only a fraction of these individuals develops FSGS or kidney failure, indicating the involvement of additional disease modifiers. Here, we show that the presence of the APOL1 p.N264K missense variant, when co-inherited with the G2 APOL1 risk allele, substantially reduces the penetrance of the G1G2 and G2G2 high-risk genotypes by rendering these genotypes low-risk. These results align with prior functional evidence showing that the p.N264K variant reduces the toxicity of the APOL1 high-risk alleles. These findings have important implications for our understanding of the mechanisms of APOL1-associated nephropathy, as well as for the clinical management of individuals with high-risk genotypes that include the G2 allele., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
15. FSGS Recurrence Collaboration: Report of a Symposium.
- Author
-
Gipson DS, Wang CS, Salmon E, Gbadegesin R, Naik A, Sanna-Cherchi S, Fornoni A, Kretzler M, Merscher S, Hoover P, Kidwell K, Saleem M, Riella L, Holzman L, Jackson A, Olabisi O, Cravedi P, Freedman BS, Himmelfarb J, Vivarelli M, Harder J, Klein J, Burke G, Rheault M, Spino C, Desmond HE, and Trachtman H
- Abstract
Competing Interests: Debbie Gipson received research funding through the University of Michigan from Reata, Travere, Novartis, Boehringer Ingelheim, and Goldfinch Bio and past consulting through the University of Michigan from Novartis, Vertex, and Genentech/Roche. Chia-shi Wang, Eloise Salmon, Rasheed Gbadegesin, Abhijit Naik, and Simone Sanna-Cherchi have no disclosures. Alessia Fornoni is one of the inventors on pending (PCT/US2019/032215; US 17/057,247; PCT/US2019/041730; PCT/US2013/036484; US 17/259,883; US17/259,883; JP501309/2021 and EU19834217.2; CN-201980060078.3; CA2,930,119; CA3,012,773; and CA2,852,904) or issued patents (US10,183,038 and US10,052,345) aimed at preventing and treating renal disease. She stands to gain royalties from their future commercialization. AF is vice president of L&F Health LLC and is a consultant for ZyVersa Therapeutics, Inc. ZyVersa Therapeutics, Inc., has licensed worldwide rights to develop and commercialize hydroxypropyl-beta-cyclodextrin for the treatment of kidney disease from L&F Research, which was partially funded by L&F Health LLC. She also holds equities in Renal 3 River Corporation. Matthias Kretzler has received research support on behalf of the University of Michigan from Boehringer Ingelheim, Novo Nordisk, Certa, Poxel, Astellas, and Janssen, has received research funding from NIH, JDRF, Chan Zuckerburg Initiative, amfAR, AstraZeneca, Boehringer Ingelheim, Elpidera, Gilead, Goldfinch Bio, Eli Lilly, Angion Biomedica, Certa, Novo Nordisk, Janssen, Chinook, RenalytixAI, Regeneron Pharmaceuticals, Travere Therapeutics, and Ionis Pharmaceuticals, is on the editorial boards for J Am Soc Nephrology, Kidney Int, and Kidney Dis, and is on an advisory board for NephCure Kidney International. Sandra Merscher is an inventor on pending and issued patents aimed to diagnose or treat proteinuric renal diseases. She stands to gain royalties from their future commercialization. She holds equity interest in L&F Research and is a shareholder of ZyVersa Pharmaceuticals, Inc., who has licensed worldwide rights to develop and commercialize hydroxypropyl-beta-cyclodextrin for the treatment of kidney diseases from L&F Research. Paul Hoover, Kelley Kidwell, Moin Saleem, Leonard Riella, Lawrence Holzman, Annette Jackson, and Opeyemi Olabisi have no disclosures. Paolo Cravedi is a consultant for Chinook therapeutics, Repertoire Immune Medicines, and Calliditas Therapeutics. Benjamin Freedman is an inventor on a patent and patent applications related to human kidney organoid differentiation and modeling of FSGS in this system (e.g., “three-dimensional differentiation of epiblast spheroids into kidney tubular organoids modeling human micro-physiology, toxicology, and morphogenesis” [Japan, USA, and Australia], licensed to STEMCELL Technologies). He has ownership interest in Plurexa LLC. Hailey Desmond received research funding through the University of Michigan from Boehringer Ingelheim, Travere, Roche, Novartis, and Reata. Howard Trachtman is a consultant to Travere Therapeutics Inc., Walden, Boehringer Ingelheim (pending), Natera, Otsuka, and Aclipse. He is the board of the Kidney Health Initiative and the editorial board of Pediatric Nephrology and Kidney360.
- Published
- 2023
- Full Text
- View/download PDF
16. Strong protective effect of the APOL1 p.N264K variant against G2-associated focal segmental glomerulosclerosis and kidney disease.
- Author
-
Gupta Y, Friedman DJ, McNulty M, Khan A, Lane B, Wang C, Ke J, Jin G, Wooden B, Knob AL, Lim TY, Appel GB, Huggins K, Liu L, Mitrotti A, Stangl MC, Bomback A, Westland R, Bodria M, Marasa M, Shang N, Cohen DJ, Crew RJ, Morello W, Canetta P, Radhakrishnan J, Martino J, Liu Q, Chung WK, Espinoza A, Luo Y, Wei WQ, Feng Q, Weng C, Fang Y, Kullo IJ, Naderian M, Limdi N, Irvin MR, Tiwari H, Mohan S, Rao M, Dube G, Chaudhary NS, Gutiérrez OM, Judd SE, Cushman M, Lange LA, Lange EM, Bivona DL, Verbitsky M, Winkler CA, Kopp JB, Santoriello D, Batal I, Brant Pinheiro SV, Araújo Oliveira E, E Silva ACS, Pisani I, Fiaccadori E, Lin F, Gesualdo L, Amoroso A, Ghiggeri GM, D'Agati VD, Magistroni R, Kenny EE, Loos RJF, Montini G, Hildebrandt F, Paul DS, Petrovski S, Goldstein DB, Kretzler M, Gbadegesin R, Gharavi AG, Kiryluk K, Sampson MG, Pollak MR, and Sanna-Cherchi S
- Abstract
Black Americans have a significantly higher risk of developing chronic kidney disease (CKD), especially focal segmental glomerulosclerosis (FSGS), than European Americans. Two coding variants (G1 and G2) in the APOL1 gene play a major role in this disparity. While 13% of Black Americans carry the high-risk recessive genotypes, only a fraction of these individuals develops FSGS or kidney failure, indicating the involvement of additional disease modifiers. Here, we show that the presence of the APOL1 p.N264K missense variant, when co-inherited with the G2 APOL1 risk allele, substantially reduces the penetrance of the G1G2 and G2G2 high-risk genotypes by rendering these genotypes low-risk. These results align with prior functional evidence showing that the p.N264K variant reduces the toxicity of the APOL1 high-risk alleles. These findings have important implications for our understanding of the mechanisms of APOL1 -associated nephropathy, as well as for the clinical management of individuals with high-risk genotypes that include the G2 allele.
- Published
- 2023
- Full Text
- View/download PDF
17. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy.
- Author
-
Kiryluk K, Sanchez-Rodriguez E, Zhou XJ, Zanoni F, Liu L, Mladkova N, Khan A, Marasa M, Zhang JY, Balderes O, Sanna-Cherchi S, Bomback AS, Canetta PA, Appel GB, Radhakrishnan J, Trimarchi H, Sprangers B, Cattran DC, Reich H, Pei Y, Ravani P, Galesic K, Maixnerova D, Tesar V, Stengel B, Metzger M, Canaud G, Maillard N, Berthoux F, Berthelot L, Pillebout E, Monteiro R, Nelson R, Wyatt RJ, Smoyer W, Mahan J, Samhar AA, Hidalgo G, Quiroga A, Weng P, Sreedharan R, Selewski D, Davis K, Kallash M, Vasylyeva TL, Rheault M, Chishti A, Ranch D, Wenderfer SE, Samsonov D, Claes DJ, Akchurin O, Goumenos D, Stangou M, Nagy J, Kovacs T, Fiaccadori E, Amoroso A, Barlassina C, Cusi D, Del Vecchio L, Battaglia GG, Bodria M, Boer E, Bono L, Boscutti G, Caridi G, Lugani F, Ghiggeri G, Coppo R, Peruzzi L, Esposito V, Esposito C, Feriozzi S, Polci R, Frasca G, Galliani M, Garozzo M, Mitrotti A, Gesualdo L, Granata S, Zaza G, Londrino F, Magistroni R, Pisani I, Magnano A, Marcantoni C, Messa P, Mignani R, Pani A, Ponticelli C, Roccatello D, Salvadori M, Salvi E, Santoro D, Gembillo G, Savoldi S, Spotti D, Zamboli P, Izzi C, Alberici F, Delbarba E, Florczak M, Krata N, Mucha K, Pączek L, Niemczyk S, Moszczuk B, Pańczyk-Tomaszewska M, Mizerska-Wasiak M, Perkowska-Ptasińska A, Bączkowska T, Durlik M, Pawlaczyk K, Sikora P, Zaniew M, Kaminska D, Krajewska M, Kuzmiuk-Glembin I, Heleniak Z, Bullo-Piontecka B, Liberek T, Dębska-Slizien A, Hryszko T, Materna-Kiryluk A, Miklaszewska M, Szczepańska M, Dyga K, Machura E, Siniewicz-Luzeńczyk K, Pawlak-Bratkowska M, Tkaczyk M, Runowski D, Kwella N, Drożdż D, Habura I, Kronenberg F, Prikhodina L, van Heel D, Fontaine B, Cotsapas C, Wijmenga C, Franke A, Annese V, Gregersen PK, Parameswaran S, Weirauch M, Kottyan L, Harley JB, Suzuki H, Narita I, Goto S, Lee H, Kim DK, Kim YS, Park JH, Cho B, Choi M, Van Wijk A, Huerta A, Ars E, Ballarin J, Lundberg S, Vogt B, Mani LY, Caliskan Y, Barratt J, Abeygunaratne T, Kalra PA, Gale DP, Panzer U, Rauen T, Floege J, Schlosser P, Ekici AB, Eckardt KU, Chen N, Xie J, Lifton RP, Loos RJF, Kenny EE, Ionita-Laza I, Köttgen A, Julian BA, Novak J, Scolari F, Zhang H, and Gharavi AG
- Subjects
- Animals, Mice, Genome-Wide Association Study, Immunoglobulin A genetics, Glomerulonephritis, IGA drug therapy, Glomerulonephritis, IGA genetics, Glomerulonephritis, IGA diagnosis
- Abstract
IgA nephropathy (IgAN) is a progressive form of kidney disease defined by glomerular deposition of IgA. Here we performed a genome-wide association study of 10,146 kidney-biopsy-diagnosed IgAN cases and 28,751 controls across 17 international cohorts. We defined 30 genome-wide significant risk loci explaining 11% of disease risk. A total of 16 loci were new, including TNFSF4/TNFSF18, REL, CD28, PF4V1, LY86, LYN, ANXA3, TNFSF8/TNFSF15, REEP3, ZMIZ1, OVOL1/RELA, ETS1, IGH, IRF8, TNFRSF13B and FCAR. The risk loci were enriched in gene orthologs causing abnormal IgA levels when genetically manipulated in mice. We also observed a positive genetic correlation between IgAN and serum IgA levels. High polygenic score for IgAN was associated with earlier onset of kidney failure. In a comprehensive functional annotation analysis of candidate causal genes, we observed convergence of biological candidates on a common set of inflammatory signaling pathways and cytokine ligand-receptor pairs, prioritizing potential new drug targets., (© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.)
- Published
- 2023
- Full Text
- View/download PDF
18. Adaptive Response to Gillnets Bycatch in a North Sardinia Mediterranean Shag ( Gulosus aristotelis desmarestii ) Population.
- Author
-
Satta V, Pira A, Cherchi S, Nissardi S, Rotta A, Pirastru M, Mereu P, Zedda M, Bogliolo L, Naitana S, and Leoni GG
- Abstract
Mediterranean Shag ( Gulosus aristotelis desmarestii ) is a seabird endemic to the Mediterranean and Black Seas, recently included in the IUCN list of threatened Species. Most of the reproductive colonies are hosted in Sardinia and surrounding islets. Bycatch in fishing nets is one of the most significant threats for this population. Our work aimed to assess alterations in the sex ratio caused by bycatch and to study the adaptive response of the population to a skewed adult sex ratio. The sex ratio of Mediterranean Shags found drowned in the gillnets near the colonies and that of the nestlings of the Corcelli (northeast Sardinia) colony was determined using the sex-linked polymorphism of the gene Chromobox-Helicase-DNA-binding 1. The data of the shags found drowned in gillnets evidenced a high mortality rate (83.3%; p < 0.001) and a larger size of males (35% heavier than females, p < 0.05) compared to females, supporting the theory that heavier individuals are able to forage at great depths. With 64.8% of the nestlings being male, the sex ratio of nestlings was statistically different from parity ( p < 0.05). Furthermore, it was related to the brood size. In one- and two-chick broods, 73% and 70% of nestlings, respectively, were males, while in three-chick broods, only 33% were males. Our data identify the higher rate of male shags drowned in gillnets as a factor causing an alteration of the sex ratio in the Mediterranean Shag population. According to the Sex Allocation Theory, an adaptive adjustment of sex made by adult females restores the Mendelian sex ratio in the population.
- Published
- 2023
- Full Text
- View/download PDF
19. Rare Single Nucleotide and Copy Number Variants and the Etiology of Congenital Obstructive Uropathy: Implications for Genetic Diagnosis.
- Author
-
Ahram DF, Lim TY, Ke J, Jin G, Verbitsky M, Bodria M, Kil BH, Chatterjee D, Piva SE, Marasa M, Zhang JY, Cocchi E, Caridi G, Gucev Z, Lozanovski VJ, Pisani I, Izzi C, Savoldi G, Gnutti B, Capone VP, Morello W, Guarino S, Esposito P, Lambert S, Radhakrishnan J, Appel GB, Uy NS, Rao MK, Canetta PA, Bomback AS, Nestor JG, Hays T, Cohen DJ, Finale C, Wijk JAEV, La Scola C, Baraldi O, Tondolo F, Di Renzo D, Jamry-Dziurla A, Pezzutto A, Manca V, Mitrotti A, Santoro D, Conti G, Martino M, Giordano M, Gesualdo L, Zibar L, Masnata G, Bonomini M, Alberti D, La Manna G, Caliskan Y, Ranghino A, Marzuillo P, Kiryluk K, Krzemień G, Miklaszewska M, Lin F, Montini G, Scolari F, Fiaccadori E, Arapović A, Saraga M, McKiernan J, Alam S, Zaniew M, Szczepańska M, Szmigielska A, Sikora P, Drożdż D, Mizerska-Wasiak M, Mane S, Lifton RP, Tasic V, Latos-Bielenska A, Gharavi AG, Ghiggeri GM, Materna-Kiryluk A, Westland R, and Sanna-Cherchi S
- Subjects
- Humans, DNA Copy Number Variations, Kidney Pelvis pathology, Hydronephrosis, Ureteral Obstruction complications, Ureteral Obstruction genetics, Vesico-Ureteral Reflux diagnosis, Vesico-Ureteral Reflux genetics
- Abstract
Significance Statement: Congenital obstructive uropathy (COU) is a prevalent human developmental defect with highly heterogeneous clinical presentations and outcomes. Genetics may refine diagnosis, prognosis, and treatment, but the genomic architecture of COU is largely unknown. Comprehensive genomic screening study of 733 cases with three distinct COU subphenotypes revealed disease etiology in 10.0% of them. We detected no significant differences in the overall diagnostic yield among COU subphenotypes, with characteristic variable expressivity of several mutant genes. Our findings therefore may legitimize a genetic first diagnostic approach for COU, especially when burdening clinical and imaging characterization is not complete or available., Background: Congenital obstructive uropathy (COU) is a common cause of developmental defects of the urinary tract, with heterogeneous clinical presentation and outcome. Genetic analysis has the potential to elucidate the underlying diagnosis and help risk stratification., Methods: We performed a comprehensive genomic screen of 733 independent COU cases, which consisted of individuals with ureteropelvic junction obstruction ( n =321), ureterovesical junction obstruction/congenital megaureter ( n =178), and COU not otherwise specified (COU-NOS; n =234)., Results: We identified pathogenic single nucleotide variants (SNVs) in 53 (7.2%) cases and genomic disorders (GDs) in 23 (3.1%) cases. We detected no significant differences in the overall diagnostic yield between COU sub-phenotypes, and pathogenic SNVs in several genes were associated to any of the three categories. Hence, although COU may appear phenotypically heterogeneous, COU phenotypes are likely to share common molecular bases. On the other hand, mutations in TNXB were more often identified in COU-NOS cases, demonstrating the diagnostic challenge in discriminating COU from hydronephrosis secondary to vesicoureteral reflux, particularly when diagnostic imaging is incomplete. Pathogenic SNVs in only six genes were found in more than one individual, supporting high genetic heterogeneity. Finally, convergence between data on SNVs and GDs suggest MYH11 as a dosage-sensitive gene possibly correlating with severity of COU., Conclusions: We established a genomic diagnosis in 10.0% of COU individuals. The findings underscore the urgent need to identify novel genetic susceptibility factors to COU to better define the natural history of the remaining 90% of cases without a molecular diagnosis., (Copyright © 2023 by the American Society of Nephrology.)
- Published
- 2023
- Full Text
- View/download PDF
20. Implementation and Feasibility of Clinical Genome Sequencing Embedded Into the Outpatient Nephrology Care for Patients With Proteinuric Kidney Disease.
- Author
-
Marasa M, Ahram DF, Rehman AU, Mitrotti A, Abhyankar A, Jain NG, Weng PL, Piva SE, Fernandez HE, Uy NS, Chatterjee D, Kil BH, Nestor JG, Felice V, Robinson D, Whyte D, Gharavi AG, Appel GB, Radhakrishnan J, Santoriello D, Bomback A, Lin F, D'Agati VD, Jobanputra V, and Sanna-Cherchi S
- Abstract
Introduction: The diagnosis and management of proteinuric kidney diseases such as focal segmental glomerulosclerosis (FSGS) are challenging. Genetics holds the promise to improve clinical decision making for these diseases; however, it is often performed too late to enable timely clinical action and it is not implemented within routine outpatient nephrology visits., Methods: We sought to test the implementation and feasibility of clinical rapid genome sequencing (GS) in guiding decision making in patients with proteinuric kidney disease in real-time and embedded in the outpatient nephrology setting., Results: We enrolled 10 children or young adults with biopsy-proven FSGS (9 cases) or minimal change disease (1 case). The mean age at enrollment was 16.2 years (range 2-30). The workflow did not require referral to external genetics clinics but was conducted entirely during the nephrology standard-of-care appointments. The total turn-around-time from enrollment to return-of-results and clinical decision averaged 21.8 days (12.4 for GS), which is well within a time frame that allows clinically relevant treatment decisions. A monogenic or APOL1-related form of kidney disease was diagnosed in 5 of 10 patients. The genetic findings resulted in a rectified diagnosis in 6 patients. Both positive and negative GS findings determined a change in pharmacological treatment. In 3 patients, the results were instrumental for transplant evaluation, donor selection, and the immunosuppressive treatment. All patients and families received genetic counseling., Conclusion: Clinical GS is feasible and can be implemented in real-time in the outpatient care to help guiding clinical management. Additional studies are needed to confirm the cost-effectiveness and broader utility of clinical GS across the phenotypic and demographic spectrum of kidney diseases., (© 2023 International Society of Nephrology. Published by Elsevier Inc.)
- Published
- 2023
- Full Text
- View/download PDF
21. CERT1 mutations perturb human development by disrupting sphingolipid homeostasis.
- Author
-
Gehin C, Lone MA, Lee W, Capolupo L, Ho S, Adeyemi AM, Gerkes EH, Stegmann AP, López-Martín E, Bermejo-Sánchez E, Martínez-Delgado B, Zweier C, Kraus C, Popp B, Strehlow V, Gräfe D, Knerr I, Jones ER, Zamuner S, Abriata LA, Kunnathully V, Moeller BE, Vocat A, Rommelaere S, Bocquete JP, Ruchti E, Limoni G, Van Campenhoudt M, Bourgeat S, Henklein P, Gilissen C, van Bon BW, Pfundt R, Willemsen MH, Schieving JH, Leonardi E, Soli F, Murgia A, Guo H, Zhang Q, Xia K, Fagerberg CR, Beier CP, Larsen MJ, Valenzuela I, Fernández-Álvarez P, Xiong S, Śmigiel R, López-González V, Armengol L, Morleo M, Selicorni A, Torella A, Blyth M, Cooper NS, Wilson V, Oegema R, Herenger Y, Garde A, Bruel AL, Tran Mau-Them F, Maddocks AB, Bain JM, Bhat MA, Costain G, Kannu P, Marwaha A, Champaigne NL, Friez MJ, Richardson EB, Gowda VK, Srinivasan VM, Gupta Y, Lim TY, Sanna-Cherchi S, Lemaitre B, Yamaji T, Hanada K, Burke JE, Jakšić AM, McCabe BD, De Los Rios P, Hornemann T, D'Angelo G, and Gennarino VA
- Subjects
- Humans, Homeostasis, Mutation, Ceramides metabolism, Sphingolipids genetics, Sphingolipids metabolism
- Abstract
Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.
- Published
- 2023
- Full Text
- View/download PDF
22. Multi-population genome-wide association study implicates immune and non-immune factors in pediatric steroid-sensitive nephrotic syndrome.
- Author
-
Barry A, McNulty MT, Jia X, Gupta Y, Debiec H, Luo Y, Nagano C, Horinouchi T, Jung S, Colucci M, Ahram DF, Mitrotti A, Sinha A, Teeninga N, Jin G, Shril S, Caridi G, Bodria M, Lim TY, Westland R, Zanoni F, Marasa M, Turudic D, Giordano M, Gesualdo L, Magistroni R, Pisani I, Fiaccadori E, Reiterova J, Maringhini S, Morello W, Montini G, Weng PL, Scolari F, Saraga M, Tasic V, Santoro D, van Wijk JAE, Milošević D, Kawai Y, Kiryluk K, Pollak MR, Gharavi A, Lin F, Simœs E Silva AC, Loos RJF, Kenny EE, Schreuder MF, Zurowska A, Dossier C, Ariceta G, Drozynska-Duklas M, Hogan J, Jankauskiene A, Hildebrandt F, Prikhodina L, Song K, Bagga A, Cheong H 2nd, Ghiggeri GM, Vachvanichsanong P, Nozu K, Lee D, Vivarelli M, Raychaudhuri S, Tokunaga K, Sanna-Cherchi S, Ronco P, Iijima K, and Sampson MG
- Subjects
- Humans, Child, Genetic Predisposition to Disease, Haplotypes, Risk Factors, Polymorphism, Single Nucleotide, Genome-Wide Association Study, Nephrotic Syndrome genetics
- Abstract
Pediatric steroid-sensitive nephrotic syndrome (pSSNS) is the most common childhood glomerular disease. Previous genome-wide association studies (GWAS) identified a risk locus in the HLA Class II region and three additional independent risk loci. But the genetic architecture of pSSNS, and its genetically driven pathobiology, is largely unknown. Here, we conduct a multi-population GWAS meta-analysis in 38,463 participants (2440 cases). We then conduct conditional analyses and population specific GWAS. We discover twelve significant associations-eight from the multi-population meta-analysis (four novel), two from the multi-population conditional analysis (one novel), and two additional novel loci from the European meta-analysis. Fine-mapping implicates specific amino acid haplotypes in HLA-DQA1 and HLA-DQB1 driving the HLA Class II risk locus. Non-HLA loci colocalize with eQTLs of monocytes and numerous T-cell subsets in independent datasets. Colocalization with kidney eQTLs is lacking but overlap with kidney cell open chromatin suggests an uncharacterized disease mechanism in kidney cells. A polygenic risk score (PRS) associates with earlier disease onset. Altogether, these discoveries expand our knowledge of pSSNS genetic architecture across populations and provide cell-specific insights into its molecular drivers. Evaluating these associations in additional cohorts will refine our understanding of population specificity, heterogeneity, and clinical and molecular associations., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
23. Genomic Disorders in CKD across the Lifespan.
- Author
-
Verbitsky M, Krishnamurthy S, Krithivasan P, Hughes D, Khan A, Marasà M, Vena N, Khosla P, Zhang J, Lim TY, Glessner JT, Weng C, Shang N, Shen Y, Hripcsak G, Hakonarson H, Ionita-Laza I, Levy B, Kenny EE, Loos RJF, Kiryluk K, Sanna-Cherchi S, Crosslin DR, Furth S, Warady BA, Igo RP Jr, Iyengar SK, Wong CS, Parsa A, Feldman HI, and Gharavi AG
- Subjects
- Humans, Cohort Studies, Prospective Studies, Genomics, Disease Progression, Risk Factors, Longevity, Renal Insufficiency, Chronic epidemiology, Renal Insufficiency, Chronic genetics, Renal Insufficiency, Chronic complications
- Abstract
Significance Statement: Pathogenic structural genetic variants, also known as genomic disorders, have been associated with pediatric CKD. This study extends those results across the lifespan, with genomic disorders enriched in both pediatric and adult patients compared with controls. In the Chronic Renal Insufficiency Cohort study, genomic disorders were also associated with lower serum Mg, lower educational performance, and a higher risk of death. A phenome-wide association study confirmed the link between kidney disease and genomic disorders in an unbiased way. Systematic detection of genomic disorders can provide a molecular diagnosis and refine prediction of risk and prognosis., Background: Genomic disorders (GDs) are associated with many comorbid outcomes, including CKD. Identification of GDs has diagnostic utility., Methods: We examined the prevalence of GDs among participants in the Chronic Kidney Disease in Children (CKiD) cohort II ( n =248), Chronic Renal Insufficiency Cohort (CRIC) study ( n =3375), Columbia University CKD Biobank (CU-CKD; n =1986), and the Family Investigation of Nephropathy and Diabetes (FIND; n =1318) compared with 30,746 controls. We also performed a phenome-wide association analysis (PheWAS) of GDs in the electronic MEdical Records and GEnomics (eMERGE; n =11,146) cohort., Results: We found nine out of 248 (3.6%) CKiD II participants carried a GD, replicating prior findings in pediatric CKD. We also identified GDs in 72 out of 6679 (1.1%) adult patients with CKD in the CRIC, CU-CKD, and FIND cohorts, compared with 199 out of 30,746 (0.65%) GDs in controls (OR, 1.7; 95% CI, 1.3 to 2.2). Among adults with CKD, we found recurrent GDs at the 1q21.1, 16p11.2, 17q12, and 22q11.2 loci. The 17q12 GD (diagnostic of renal cyst and diabetes syndrome) was most frequent, present in 1:252 patients with CKD and diabetes. In the PheWAS, dialysis and neuropsychiatric phenotypes were the top associations with GDs. In CRIC participants, GDs were associated with lower serum magnesium, lower educational achievement, and higher mortality risk., Conclusion: Undiagnosed GDs are detected both in children and adults with CKD. Identification of GDs in these patients can enable a precise genetic diagnosis, inform prognosis, and help stratify risk in clinical studies. GDs could also provide a molecular explanation for nephropathy and comorbidities, such as poorer neurocognition for a subset of patients., (Copyright © 2022 by the American Society of Nephrology.)
- Published
- 2023
- Full Text
- View/download PDF
24. ParseCNV2: a versatile and integrated tool for copy number variation association studies.
- Author
-
Lim TY, Verbitsky M, and Sanna-Cherchi S
- Subjects
- Humans, Gene Dosage, DNA Copy Number Variations, Genome-Wide Association Study
- Published
- 2023
- Full Text
- View/download PDF
25. Impact of diet and host genetics on the murine intestinal mycobiome.
- Author
-
Gupta Y, Ernst AL, Vorobyev A, Beltsiou F, Zillikens D, Bieber K, Sanna-Cherchi S, Christiano AM, Sadik CD, Ludwig RJ, and Sezin T
- Subjects
- Male, Female, Animals, Mice, Ecosystem, Diet, Quantitative Trait Loci, Bacteria genetics, Fungi genetics, Mammals genetics, Mycobiome genetics
- Abstract
The mammalian gut is home to a diverse microbial ecosystem, whose composition affects various physiological traits of the host. Next-generation sequencing-based metagenomic approaches demonstrated how the interplay of host genetics, bacteria, and environmental factors shape complex traits and clinical outcomes. However, the role of fungi in these complex interactions remains understudied. Here, using 228 males and 363 females from an advanced-intercross mouse line, we provide evidence that fungi are regulated by host genetics. In addition, we map quantitative trait loci associated with various fungal species to single genes in mice using whole genome sequencing and genotyping. Moreover, we show that diet and its' interaction with host genetics alter the composition of fungi in outbred mice, and identify fungal indicator species associated with different dietary regimes. Collectively, in this work, we uncover an association of the intestinal fungal community with host genetics and a regulatory role of diet in this ecological niche., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
26. Origin, Genetic Variation and Molecular Epidemiology of SARS-CoV-2 Strains Circulating in Sardinia (Italy) during the First and Second COVID-19 Epidemic Waves.
- Author
-
Rocchigiani AM, Ferretti L, Ledda A, Di Nardo A, Floris M, Bonelli P, Loi F, Idda ML, Angioi PP, Zinellu S, Fiori MS, Bechere R, Capitta P, Coccollone A, Coradduzza E, Dettori MA, Fattaccio MC, Gallisai E, Maestrale C, Manunta D, Pedditzi A, Piredda I, Palmas B, Salza S, Sechi AM, Tanda B, Madrau MP, Sanna ML, Cherchi S, Ponti N, Masala G, Sirica R, Evangelista E, Oggiano A, Puggioni G, Ligios C, and Dei Giudici S
- Subjects
- Humans, Molecular Epidemiology, Italy epidemiology, Phylogeography, Genetic Variation, SARS-CoV-2 genetics, COVID-19 epidemiology
- Abstract
Understanding how geography and human mobility shape the patterns and spread of infectious diseases such as COVID-19 is key to control future epidemics. An interesting example is provided by the second wave of the COVID-19 epidemic in Europe, which was facilitated by the intense movement of tourists around the Mediterranean coast in summer 2020. The Italian island of Sardinia is a major tourist destination and is widely believed to be the origin of the second Italian wave. In this study, we characterize the genetic variation among SARS-CoV-2 strains circulating in northern Sardinia during the first and second Italian waves using both Illumina and Oxford Nanopore Technologies Next Generation Sequencing methods. Most viruses were placed into a single clade, implying that despite substantial virus inflow, most outbreaks did not spread widely. The second epidemic wave on the island was actually driven by local transmission of a single B.1.177 subclade. Phylogeographic analyses further suggest that those viral strains circulating on the island were not a relevant source for the second epidemic wave in Italy. This result, however, does not rule out the possibility of intense mixing and transmission of the virus among tourists as a major contributor to the second Italian wave.
- Published
- 2023
- Full Text
- View/download PDF
27. From development to taxonomy: the case of Sciaenacotyle pancerii (Monogenea: Microcotylidae) in the Mediterranean meagre.
- Author
-
Villar-Torres M, Montero FE, Merella P, Garippa G, Cherchi S, Raga JA, and Repullés-Albelda A
- Subjects
- Animals, Phylogeny, Gills parasitology, Larva, Fish Diseases parasitology, Trematoda, Perciformes parasitology
- Abstract
The microcotylid Sciaenacotyle pancerii is a pathogenic monogenean infecting Argyrosomus regius , a candidate for species diversification in the Mediterranean aquaculture. Life-history stages of S. pancerii commonly co-occur in field infections, but to date, morphological data have only been provided for oncomiracidia and adults although identifying life-history stages can be useful in infection management. A total of 114 specimens of S. pancerii were analysed to characterize the developmental events and to assess morphological and morphometric variations before and after maturity. The post-larval development of S. pancerii is characterized by: expansion and bifurcation of the gut, loss of the larval haptor, protandrous development of the genitalia and vitellaria formation. The size variability of larval hooks, hamuli and germanium of S. pancerii is firstly reported and dimensional ranges of parasite body, haptor, testes, posteriormost clamps and eggs are widened. The size of most of the diagnostic features of S. pancerii significantly increases after parasite maturity and therefore, only those specimens with more than 116 clamps should be considered for minimising development-related variability in size. The high number of clamps, their fast development and the asymmetry in their size and arrangement suggest that S. pancerii may use a mixed attachment strategy between the closely related microcotylids and heteraxinids. This combination of features may be host related and linked to the gill structure of the sciaenid fish and the phylogenetic position of the genus Sciaenacotyle ; distant from other microcotylids while close to heteraxinid species.
- Published
- 2022
- Full Text
- View/download PDF
28. Psychodiagnostic Investigation between Diabetes and Depression: There Is a Correlation.
- Author
-
Meloni ME, Cherchi S, and Tonolo G
- Subjects
- COVID-19 epidemiology, COVID-19 psychology, Humans, Pandemics, Psychiatric Status Rating Scales, Depression diagnosis, Depression epidemiology, Diabetes Mellitus, Type 2 diagnosis, Diabetes Mellitus, Type 2 epidemiology
- Abstract
In this study, with a psychodiagnostic survey, we wanted to evaluate the possible presence of depressive symptoms in patients diagnosed with type 2 diabetes. The sample of 106 type 2 diabetic patients consisted of three groups. Group A of 80 patients interviewed in 2017 at the Olbia clinic, group A-1 (a subgroup of A), of 41 patients with a follow-up after 5 years from the first examination in 2017 and group B of 26 new type 2 diabetic patients examined for the first time in 2022. All subject underwent an interview and and have completed the following validated questionnaires: Questionnaire for Mood Disorders (MDQ), Hamilton Psychiatric Rating Scale for Depression (HAM-D), Montgomery-Asberg Scale for Depression (MADRS), Hamilton Anxiety Scale (HAR -S) and Clinical Global Impression (CGI). The objective of the follow-up was to evaluate the possible emotional impact of the COVID-19 pandemic. The aim of the research is to evaluate the correlation between any depressive symptoms and diabetes.
- Published
- 2022
29. Copy Number Variation Analysis Facilitates Identification of Genetic Causation in Patients with Congenital Anomalies of the Kidney and Urinary Tract.
- Author
-
Wu CW, Lim TY, Wang C, Seltzsam S, Zheng B, Schierbaum L, Schneider S, Mann N, Connaughton DM, Nakayama M, van der Ven AT, Dai R, Kolvenbach CM, Kause F, Ottlewski I, Stajic N, Soliman NA, Kari JA, El Desoky S, Fathy HM, Milosevic D, Turudic D, Al Saffar M, Awad HS, Eid LA, Ramanathan A, Senguttuvan P, Mane SM, Lee RS, Bauer SB, Lu W, Hilger AC, Tasic V, Shril S, Sanna-Cherchi S, and Hildebrandt F
- Abstract
Background: Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease among children and adults younger than 30 yr. In our previous study, whole-exome sequencing (WES) identified a known monogenic cause of isolated or syndromic CAKUT in 13% of families with CAKUT. However, WES has limitations and detection of copy number variations (CNV) is technically challenging, and CNVs causative of CAKUT have previously been detected in up to 16% of cases., Objective: To detect CNVs causing CAKUT in this WES cohort and increase the diagnostic yield., Design Setting and Participants: We performed a genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on the same CAKUT cohort for whom WES was previously conducted., Outcome Measurements and Statistical Analysis: We evaluated and classified the CNVs using previously published predefined criteria., Results and Limitations: In a cohort of 170 CAKUT families, we detected a pathogenic CNV known to cause CAKUT in nine families (5.29%, 9/170). There were no competing variants on genome-wide CNV analysis or WES analysis. In addition, we identified novel likely pathogenic CNVs that may cause a CAKUT phenotype in three of the 170 families (1.76%)., Conclusions: CNV analysis in this cohort of 170 CAKUT families previously examined via WES increased the rate of diagnosis of genetic causes of CAKUT from 13% on WES to 18% on WES + CNV analysis combined. We also identified three candidate loci that may potentially cause CAKUT., Patient Summary: We conducted a genetics study on families with congenital anomalies of the kidney and urinary tract (CAKUT). We identified gene mutations that can explain CAKUT symptoms in 5.29% of the families, which increased the percentage of genetic causes of CAKUT to 18% from a previous study, so roughly one in five of our patients with CAKUT had a genetic cause. These analyses can help patients with CAKUT and their families in identifying a possible genetic cause., (© 2022 The Authors.)
- Published
- 2022
- Full Text
- View/download PDF
30. Incorporating genetics services into adult kidney disease care.
- Author
-
Bogyo K, Vena N, May H, Rasouly HM, Marasa M, Sanna-Cherchi S, Kiryluk K, Nestor J, and Gharavi A
- Subjects
- Adult, Humans, Genetic Services, Genetic Testing methods, Referral and Consultation, Nephrology methods, Renal Insufficiency, Chronic diagnosis, Renal Insufficiency, Chronic genetics, Renal Insufficiency, Chronic therapy
- Abstract
Studies have shown that as many as 1 in 10 adults with chronic kidney disease has a monogenic form of disease. However, genetic services in adult nephrology are limited. An adult Kidney Genetics Clinic was established within the nephrology division at a large urban academic medical center to increase access to genetic services and testing in adults with kidney disease. Between June 2019 and December 2021, a total of 363 patients were referred to the adult Kidney Genetics Clinic. Of those who completed genetic testing, a positive diagnostic finding was identified in 27.1%, a candidate diagnostic finding was identified in 6.7% of patients, and a nondiagnostic positive finding was identified in an additional 8.6% of patients, resulting in an overall yield of 42.4% for clinically relevant genetic findings in tested patients. A genetic diagnosis had implications for medical management, family member testing, and eligibility for clinical trials. With the utilization of telemedicine, genetic services reached a diverse geographic and patient population. Genetic education efforts were integral to the clinic's success, as they increased visibility and helped providers identify appropriate referrals. Ongoing access to genomic services will remain a fundamental component of patient care in adults with kidney disease., (© 2022 Wiley Periodicals LLC.)
- Published
- 2022
- Full Text
- View/download PDF
31. Clinical Real-Time Genome Sequencing to Solve the Complex and Confounded Presentation of a Child With Focal Segmental Glomerulosclerosis and Multiple Malignancies.
- Author
-
Jain NG, Ahram DF, Marasa M, Rehman AU, May HJ, Zacharoulis S, Revah-Politi A, Florido ME, Whittemore GB, Aggarwal VS, Hargus G, Anyane-Yeboa K, D'Agati VD, Lin F, Jobanputra V, and Sanna-Cherchi S
- Published
- 2022
- Full Text
- View/download PDF
32. Functional Characterization of the Thrombospondin-Related Paralogous Proteins Rhoptry Discharge Factors 1 and 2 Unveils Phenotypic Plasticity in Toxoplasma gondii Rhoptry Exocytosis.
- Author
-
Possenti A, Di Cristina M, Nicastro C, Lunghi M, Messina V, Piro F, Tramontana L, Cherchi S, Falchi M, Bertuccini L, and Spano F
- Abstract
To gain access to the intracellular cytoplasmic niche essential for their growth and replication, apicomplexan parasites such as Toxoplasma gondii rely on the timely secretion of two types of apical organelles named micronemes and rhoptries. Rhoptry proteins are key to host cell invasion and remodeling, however, the molecular mechanisms underlying the tight control of rhoptry discharge are poorly understood. Here, we report the identification and functional characterization of two novel T. gondii thrombospondin-related proteins implicated in rhoptry exocytosis. The two proteins, already annotated as MIC15 and MIC14, were renamed rhoptry discharge factor 1 (RDF1) and rhoptry discharge factor 2 (RDF2) and found to be exclusive of the Coccidia class of apicomplexan parasites. Furthermore, they were shown to have a paralogous relationship and share a C-terminal transmembrane domain followed by a short cytoplasmic tail. Immunofluorescence analysis of T. gondii tachyzoites revealed that RDF1 presents a diffuse punctate localization not reminiscent of any know subcellular compartment, whereas RDF2 was not detected. Using a conditional knockdown approach, we demonstrated that RDF1 loss caused a marked growth defect. The lack of the protein did not affect parasite gliding motility, host cell attachment, replication and egress, whereas invasion was dramatically reduced. Notably, while RDF1 depletion did not result in altered microneme exocytosis, rhoptry discharge was found to be heavily impaired. Interestingly, rhoptry secretion was reversed by spontaneous upregulation of the RDF2 gene in knockdown parasites grown under constant RDF1 repression. Collectively, our results identify RDF1 and RDF2 as additional key players in the pathway controlling rhoptry discharge. Furthermore, this study unveils a new example of compensatory mechanism contributing to phenotypic plasticity in T. gondii., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Possenti, Di Cristina, Nicastro, Lunghi, Messina, Piro, Tramontana, Cherchi, Falchi, Bertuccini and Spano.)
- Published
- 2022
- Full Text
- View/download PDF
33. Serological testing for Trichinella infection in animals and man: Current status and opportunities for advancements.
- Author
-
Gómez-Morales MÁ, Cherchi S, and Ludovisi A
- Abstract
Serological tests are widely used for the detection of Trichinella spp. infections in animals and humans. Despite some limitations, (such as low sensitivity in the early period after infection) ELISA and western blot testing have demonstrated good performance when excretory/secretory products from muscle larvae are used as antigens in agreement with the International Commission on Trichinellosis. Over recent decades, considerable progress has been made in the characterization of Trichinella -derived molecules in the hope of improving diagnosis, mainly during the early days post infection. Despite these efforts, validated tests using characterized antigens for early diagnosis are still not available. However, combining currently available sero-diagnostic tools with clinical and epidemiological data provides valuable information on Trichinella infections in humans and animals as shown in this review., Competing Interests: The authors report no declarations of interest., (© 2022 The Authors.)
- Published
- 2022
- Full Text
- View/download PDF
34. Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations.
- Author
-
Khan K, Ahram DF, Liu YP, Westland R, Sampogna RV, Katsanis N, Davis EE, and Sanna-Cherchi S
- Subjects
- DNA Copy Number Variations, Genomics, Humans, Kidney abnormalities, Urinary Tract, Urogenital Abnormalities diagnosis, Urogenital Abnormalities genetics
- Abstract
Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development., (Copyright © 2022 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
35. GWAS in Mice Maps Susceptibility to HIV-Associated Nephropathy to the Ssbp2 Locus.
- Author
-
Steers NJ, Gupta Y, D'Agati VD, Lim TY, DeMaria N, Mo A, Liang J, Stevens KO, Ahram DF, Lam WY, Gagea M, Nagarajan L, Sanna-Cherchi S, and Gharavi AG
- Subjects
- Animals, Disease Models, Animal, Female, Genome-Wide Association Study, Male, Mice, Mice, Transgenic, AIDS-Associated Nephropathy genetics, DNA-Binding Proteins genetics, Genetic Loci genetics, Genetic Predisposition to Disease genetics, Glomerulosclerosis, Focal Segmental genetics
- Abstract
Background: To gain insight into the pathogenesis of collapsing glomerulopathy, a rare form of FSGS that often arises in the setting of viral infections, we performed a genome-wide association study (GWAS) among inbred mouse strains using a murine model of HIV-1 associated nephropathy (HIVAN)., Methods: We first generated F1 hybrids between HIV-1 transgenic mice on the FVB/NJ background and 20 inbred laboratory strains. Analysis of histology, BUN, and urinary NGAL demonstrated marked phenotypic variation among the transgenic F1 hybrids, providing strong evidence for host genetic factors in the predisposition to nephropathy. A GWAS in 365 transgenic F1 hybrids generated from these 20 inbred strains was performed., Results: We identified a genome-wide significant locus on chromosome 13-C3 and multiple additional suggestive loci. Crossannotation of the Chr. 13 locus, including single-cell transcriptomic analysis of wildtype and HIV-1 transgenic mouse kidneys, nominated Ssbp2 as the most likely candidate gene. Ssbp2 is highly expressed in podocytes, encodes a transcriptional cofactor that interacts with LDB1 and LMX1B, which are both previously implicated in FSGS. Consistent with these data, older Ssbp2 null mice spontaneously develop glomerulosclerosis, tubular casts, interstitial fibrosis, and inflammation, similar to the HIVAN mouse model., Conclusions: These findings demonstrate the utility of GWAS in mice to uncover host genetic factors for rare kidney traits and suggest Ssbp2 as susceptibility gene for HIVAN, potentially acting via the LDB1-LMX1B transcriptional network., (Copyright © 2022 by the American Society of Nephrology.)
- Published
- 2022
- Full Text
- View/download PDF
36. Copy Number Variant Analysis and Genome-wide Association Study Identify Loci with Large Effect for Vesicoureteral Reflux.
- Author
-
Verbitsky M, Krithivasan P, Batourina E, Khan A, Graham SE, Marasà M, Kim H, Lim TY, Weng PL, Sánchez-Rodríguez E, Mitrotti A, Ahram DF, Zanoni F, Fasel DA, Westland R, Sampson MG, Zhang JY, Bodria M, Kil BH, Shril S, Gesualdo L, Torri F, Scolari F, Izzi C, van Wijk JAE, Saraga M, Santoro D, Conti G, Barton DE, Dobson MG, Puri P, Furth SL, Warady BA, Pisani I, Fiaccadori E, Allegri L, Degl'Innocenti ML, Piaggio G, Alam S, Gigante M, Zaza G, Esposito P, Lin F, Simões-E-Silva AC, Brodkiewicz A, Drozdz D, Zachwieja K, Miklaszewska M, Szczepanska M, Adamczyk P, Tkaczyk M, Tomczyk D, Sikora P, Mizerska-Wasiak M, Krzemien G, Szmigielska A, Zaniew M, Lozanovski VJ, Gucev Z, Ionita-Laza I, Stanaway IB, Crosslin DR, Wong CS, Hildebrandt F, Barasch J, Kenny EE, Loos RJF, Levy B, Ghiggeri GM, Hakonarson H, Latos-Bieleńska A, Materna-Kiryluk A, Darlow JM, Tasic V, Willer C, Kiryluk K, Sanna-Cherchi S, Mendelsohn CL, and Gharavi AG
- Abstract
Background: Vesicoureteral reflux (VUR) is a common, familial genitourinary disorder, and a major cause of pediatric urinary tract infection (UTI) and kidney failure. The genetic basis of VUR is not well understood., Methods: A diagnostic analysis sought rare, pathogenic copy number variant (CNV) disorders among 1737 patients with VUR. A GWAS was performed in 1395 patients and 5366 controls, of European ancestry., Results: Altogether, 3% of VUR patients harbored an undiagnosed rare CNV disorder, such as the 1q21.1, 16p11.2, 22q11.21, and triple X syndromes ((OR, 3.12; 95% CI, 2.10 to 4.54; P =6.35×10
-8 ) The GWAS identified three study-wide significant and five suggestive loci with large effects (ORs, 1.41-6.9), containing canonical developmental genes expressed in the developing urinary tract ( WDPCP, OTX1, BMP5, VANGL1, and WNT5A ). In particular, 3.3% of VUR patients were homozygous for an intronic variant in WDPCP (rs13013890; OR, 3.65; 95% CI, 2.39 to 5.56; P =1.86×10-9 ). This locus was associated with multiple genitourinary phenotypes in the UK Biobank and eMERGE studies. Analysis of Wnt5a mutant mice confirmed the role of Wnt5a signaling in bladder and ureteric morphogenesis., Conclusions: These data demonstrate the genetic heterogeneity of VUR. Altogether, 6% of patients with VUR harbored a rare CNV or a common variant genotype conferring an OR >3. Identification of these genetic risk factors has multiple implications for clinical care and for analysis of outcomes in VUR., (Copyright © 2021 by the American Society of Nephrology.)- Published
- 2021
- Full Text
- View/download PDF
37. De novo TRIM8 variants impair its protein localization to nuclear bodies and cause developmental delay, epilepsy, and focal segmental glomerulosclerosis.
- Author
-
Weng PL, Majmundar AJ, Khan K, Lim TY, Shril S, Jin G, Musgrove J, Wang M, Ahram DF, Aggarwal VS, Bier LE, Heinzen EL, Onuchic-Whitford AC, Mann N, Buerger F, Schneider R, Deutsch K, Kitzler TM, Klämbt V, Kolb A, Mao Y, Moufawad El Achkar C, Mitrotti A, Martino J, Beck BB, Altmüller J, Benz MR, Yano S, Mikati MA, Gunduz T, Cope H, Shashi V, Trachtman H, Bodria M, Caridi G, Pisani I, Fiaccadori E, AbuMaziad AS, Martinez-Agosto JA, Yadin O, Zuckerman J, Kim A, John-Kroegel U, Tyndall AV, Parboosingh JS, Innes AM, Bierzynska A, Koziell AB, Muorah M, Saleem MA, Hoefele J, Riedhammer KM, Gharavi AG, Jobanputra V, Pierce-Hoffman E, Seaby EG, O'Donnell-Luria A, Rehm HL, Mane S, D'Agati VD, Pollak MR, Ghiggeri GM, Lifton RP, Goldstein DB, Davis EE, Hildebrandt F, and Sanna-Cherchi S
- Subjects
- Adult, Animals, Carrier Proteins chemistry, Carrier Proteins metabolism, Cell Line, Child, Child, Preschool, Codon, Nonsense, Developmental Disabilities metabolism, Epilepsy metabolism, Female, Glomerulosclerosis, Focal Segmental metabolism, Humans, Kidney metabolism, Male, Mice, Mutation, Nerve Tissue Proteins chemistry, Nerve Tissue Proteins metabolism, Phenotype, Podocytes metabolism, Exome Sequencing, Carrier Proteins genetics, Developmental Disabilities genetics, Epilepsy genetics, Glomerulosclerosis, Focal Segmental genetics, Intranuclear Space metabolism, Nephrotic Syndrome genetics, Nephrotic Syndrome metabolism, Nerve Tissue Proteins genetics
- Abstract
Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10
-11 ). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15 ). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease., (Copyright © 2021 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
38. During host cell traversal and cell-to-cell passage, Toxoplasma gondii sporozoites inhabit the parasitophorous vacuole and posteriorly release dense granule protein-associated membranous trails.
- Author
-
Tartarelli I, Tinari A, Possenti A, Cherchi S, Falchi M, Dubey JP, and Spano F
- Subjects
- Cells, Cultured, Humans, Protozoan Proteins, Sporozoites, Host-Parasite Interactions, Toxoplasma, Toxoplasmosis parasitology, Vacuoles parasitology
- Abstract
Toxoplasma gondii has a worldwide distribution and infects virtually all warm-blooded animals, including humans. Ingestion of the environmentally resistant oocyst stage, excreted only in the feces of cats, is central to transmission of this apicomplexan parasite. There is vast literature on the host and T. gondii tachyzoite (proliferative stage of the parasite) but little is known of the host-parasite interaction and conversion of the free-living stage (sporozoite inside the oocyst) to the parasitic stage. Here, we present events that follow invasion of host cells with T. gondii sporozoites by using immunofluorescence (IF) and transmission electron microscopy (TEM). Several human type cell cultures were infected with T. gondii sporozoites of the two genotypes (Type II, ME49 and Type III, VEG) most prevalent worldwide. For the first known time, using anti-rhoptry neck protein 4 (RON4) antibodies, the moving junction was visualized in sporozoites during the invasion process and shortly after its completion. Surprisingly, IF and TEM evaluation revealed that intracellular sporozoites release, at their posterior end, long membranous tails, herein named sporozoite-specific trails (SSTs). Differential permeabilization and IF experiments showed that the SSTs are associated with several dense granule proteins (GRAs) and that their membranous component is of parasite origin. Furthermore, TEM observations demonstrated that SST-associated sporozoites are delimited by a typical parasitophorous vacuole, which is retained during parasite exit from the host cell and during cell-to-cell passage. Our data strongly suggest that host cell traversal by T. gondii sporozoites relies on a novel force-producing mechanism, based on the massive extrusion at the parasite posterior pole of GRA-associated membranous material derived from the same pool of membranes forming the intravacuolar network., (Copyright © 2020 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
39. Differences in larval survival and IgG response patterns in long-lasting infections by Trichinella spiralis, Trichinella britovi and Trichinella pseudospiralis in pigs.
- Author
-
Pozio E, Merialdi G, Licata E, Della Casa G, Fabiani M, Amati M, Cherchi S, Ramini M, Faeti V, Interisano M, Ludovisi A, Rugna G, Marucci G, Tonanzi D, and Gómez-Morales MA
- Subjects
- Animals, Humans, Larva, Mice, Muscles parasitology, Species Specificity, Swine, Trichinella immunology, Trichinella spiralis immunology, Trichinella spiralis physiology, Trichinellosis immunology, Trichinellosis parasitology, Immunoglobulin G blood, Trichinella physiology, Trichinellosis epidemiology
- Abstract
Background: Domesticated and wild swine play an important role as reservoir hosts of Trichinella spp. and a source of infection for humans. Little is known about the survival of Trichinella larvae in muscles and the duration of anti-Trichinella antibodies in pigs with long-lasting infections., Methods: Sixty pigs were divided into three groups of 20 animals and infected with 10,000 larvae of Trichinella spiralis, Trichinella britovi or Trichinella pseudospiralis. Four pigs from each group were sacrificed at 2, 6, 12, 18 and 24 months post-infection (p.i.) and the number of larvae per gram (LPG) of muscles was calculated. Serum samples were tested by ELISA and western blot using excretory/secretory (ES) and crude antigens., Results: Trichinella spiralis showed the highest infectivity and immunogenicity in pigs and larvae survived in pig muscles for up to 2 years p.i. In these pigs, the IgG level significantly increased at 30 days p.i. and reached a peak at about 60 days p.i., remaining stable until the end of the experiment. In T. britovi-infected pigs, LPG was about 70 times lower than for T. spiralis at 2 months p.i. and only very few infecting larvae were detected at 6 months p.i., whereas no larvae were detected at 12, 18 and 24 months p.i. At 6 months p.i., degenerated/calcified larvae and cysts were detected in the muscles by trichinoscopy and histology. The IgG pattern showed by T. britovi-infected pigs was similar to that of T. spiralis-infected pigs, although seroconversion occurred some days later. The larval burden of T. pseudospiralis was slightly greater than for T. britovi at 2 months p.i., but no larvae were detected at 6 and 12 months p.i. In T. pseudospiralis-infected pigs, seroconversion occurred slowly, as in T. britovi-infected pigs. The IgG level showed a significant drop at 6 months p.i. and declining to the cut-off value at 12 months p.i., Conclusions: The longer survival of T. spiralis in pigs in comparison with the other two species highlights its exceptional dissemination potential. These results provide an explanation of the controversial data collected by parasitological and serological tools in the course of epidemiological investigations.
- Published
- 2020
- Full Text
- View/download PDF
40. Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations.
- Author
-
Connaughton DM, Dai R, Owen DJ, Marquez J, Mann N, Graham-Paquin AL, Nakayama M, Coyaud E, Laurent EMN, St-Germain JR, Blok LS, Vino A, Klämbt V, Deutsch K, Wu CW, Kolvenbach CM, Kause F, Ottlewski I, Schneider R, Kitzler TM, Majmundar AJ, Buerger F, Onuchic-Whitford AC, Youying M, Kolb A, Salmanullah D, Chen E, van der Ven AT, Rao J, Ityel H, Seltzsam S, Rieke JM, Chen J, Vivante A, Hwang DY, Kohl S, Dworschak GC, Hermle T, Alders M, Bartolomaeus T, Bauer SB, Baum MA, Brilstra EH, Challman TD, Zyskind J, Costin CE, Dipple KM, Duijkers FA, Ferguson M, Fitzpatrick DR, Fick R, Glass IA, Hulick PJ, Kline AD, Krey I, Kumar S, Lu W, Marco EJ, Wentzensen IM, Mefford HC, Platzer K, Povolotskaya IS, Savatt JM, Shcherbakova NV, Senguttuvan P, Squire AE, Stein DR, Thiffault I, Voinova VY, Somers MJG, Ferguson MA, Traum AZ, Daouk GH, Daga A, Rodig NM, Terhal PA, van Binsbergen E, Eid LA, Tasic V, Rasouly HM, Lim TY, Ahram DF, Gharavi AG, Reutter HM, Rehm HL, MacArthur DG, Lek M, Laricchia KM, Lifton RP, Xu H, Mane SM, Sanna-Cherchi S, Sharrocks AD, Raught B, Fisher SE, Bouchard M, Khokha MK, Shril S, and Hildebrandt F
- Subjects
- Amphibian Proteins antagonists & inhibitors, Amphibian Proteins genetics, Amphibian Proteins metabolism, Animals, Case-Control Studies, Child, Child, Preschool, DNA-Binding Proteins metabolism, Family, Female, Forkhead Transcription Factors metabolism, Heterozygote, Humans, Infant, Larva genetics, Larva growth & development, Larva metabolism, Male, Mice, Mice, Knockout, Morpholinos genetics, Morpholinos metabolism, Pedigree, Protein Binding, Repressor Proteins metabolism, Transcription Factors metabolism, Urinary Tract abnormalities, Urogenital Abnormalities metabolism, Urogenital Abnormalities pathology, Exome Sequencing, Xenopus, DNA-Binding Proteins genetics, Epigenesis, Genetic, Forkhead Transcription Factors genetics, Mutation, Repressor Proteins genetics, Transcription Factors genetics, Urinary Tract metabolism, Urogenital Abnormalities genetics
- Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder., (Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
41. Phenocopies, Phenotypic Expansion, and Coincidental Diagnoses: Time to Abandon Targeted Gene Panels?
- Author
-
Ahram DF, Aggarwal VS, and Sanna-Cherchi S
- Subjects
- Humans, Phenotype, Exome, High-Throughput Nucleotide Sequencing
- Published
- 2020
- Full Text
- View/download PDF
42. Human and mouse studies establish TBX6 in Mendelian CAKUT and as a potential driver of kidney defects associated with the 16p11.2 microdeletion syndrome.
- Author
-
Yang N, Wu N, Dong S, Zhang L, Zhao Y, Chen W, Du R, Song C, Ren X, Liu J, Pehlivan D, Liu Z, Rao J, Wang C, Zhao S, Breman AM, Xue H, Sun H, Shen J, Zhang S, Posey JE, Xu H, Jin L, Zhang J, Liu P, Sanna-Cherchi S, Qiu G, Wu Z, Lupski JR, and Zhang F
- Subjects
- Animals, Humans, Kidney, Mice, Retrospective Studies, T-Box Domain Proteins genetics, Urogenital Abnormalities, Vesico-Ureteral Reflux, Scoliosis
- Abstract
Congenital anomalies of the kidney and urinary tract (CAKUTs) are the most common cause of chronic kidney disease in children. Human 16p11.2 deletions have been associated with CAKUT, but the responsible molecular mechanism remains to be illuminated. To explore this, we investigated 102 carriers of 16p11.2 deletion from multi-center cohorts, among which we retrospectively ascertained kidney morphologic and functional data from 37 individuals (12 Chinese and 25 Caucasian/Hispanic). Significantly higher CAKUT rates were observed in 16p11.2 deletion carriers (about 25% in Chinese and 16% in Caucasian/Hispanic) than those found in the non-clinically ascertained general populations (about 1/1000 found at autopsy). Furthermore, we identified seven additional individuals with heterozygous loss-of-function variants in TBX6, a gene that maps to the 16p11.2 region. Four of these seven cases showed obvious CAKUT. To further investigate the role of TBX6 in kidney development, we engineered mice with mutated Tbx6 alleles. The Tbx6 heterozygous null (i.e., loss-of-function) mutant (Tbx6
+/‒ ) resulted in 13% solitary kidneys. Remarkably, this incidence increased to 29% in a compound heterozygous model (Tbx6mh/‒ ) that reduced Tbx6 gene dosage to below haploinsufficiency, by combining the null allele with a novel mild hypomorphic allele (mh). Renal hypoplasia was also frequently observed in these Tbx6-mutated mouse models. Thus, our findings in patients and mice establish TBX6 as a novel gene involved in CAKUT and its gene dosage insufficiency as a potential driver for kidney defects observed in the 16p11.2 microdeletion syndrome., (Copyright © 2020 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
43. Pilot Study of Return of Genetic Results to Patients in Adult Nephrology.
- Author
-
Nestor JG, Marasa M, Milo-Rasouly H, Groopman EE, Husain SA, Mohan S, Fernandez H, Aggarwal VS, Ahram DF, Vena N, Bogyo K, Bomback AS, Radhakrishnan J, Appel GB, Ahn W, Cohen DJ, Canetta PA, Dube GK, Rao MK, Morris HK, Crew RJ, Sanna-Cherchi S, Kiryluk K, and Gharavi AG
- Subjects
- Adolescent, Adult, Biological Specimen Banks, Child, Child, Preschool, Female, Genetic Predisposition to Disease, Heredity, Humans, Infant, Infant, Newborn, Kidney Diseases diagnosis, Kidney Diseases therapy, Male, Middle Aged, Patient Care Team, Pedigree, Phenotype, Pilot Projects, Predictive Value of Tests, Prognosis, Referral and Consultation, Retrospective Studies, Exome Sequencing, Workflow, Young Adult, Genetic Counseling, Genetic Testing, Kidney Diseases genetics, Nephrology
- Abstract
Background and Objectives: Actionable genetic findings have implications for care of patients with kidney disease, and genetic testing is an emerging tool in nephrology practice. However, there are scarce data regarding best practices for return of results and clinical application of actionable genetic findings for kidney patients., Design, Setting, Participants, & Measurements: We developed a return of results workflow in collaborations with clinicians for the retrospective recontact of adult nephrology patients who had been recruited into a biobank research study for exome sequencing and were identified to have medically actionable genetic findings., Results: Using this workflow, we attempted to recontact a diverse pilot cohort of 104 nephrology research participants with actionable genetic findings, encompassing 34 different monogenic etiologies of nephropathy and five single-gene disorders recommended by the American College of Medical Genetics and Genomics for return as medically actionable secondary findings. We successfully recontacted 64 (62%) participants and returned results to 41 (39%) individuals. In each case, the genetic diagnosis had meaningful implications for the patients' nephrology care. Through implementation efforts and qualitative interviews with providers, we identified over 20 key challenges associated with returning results to study participants, and found that physician knowledge gaps in genomics was a recurrent theme. We iteratively addressed these challenges to yield an optimized workflow, which included standardized consultation notes with tailored management recommendations, monthly educational conferences on core topics in genomics, and a curated list of expert clinicians for patients requiring extranephrologic referrals., Conclusions: Developing the infrastructure to support return of genetic results in nephrology was resource-intensive, but presented potential opportunities for improving patient care., Podcast: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2020_04_16_12481019.mp3., (Copyright © 2020 by the American Society of Nephrology.)
- Published
- 2020
- Full Text
- View/download PDF
44. Type IV Collagen Mutations in Familial IgA Nephropathy.
- Author
-
Li Y, Groopman EE, D'Agati V, Prakash S, Zhang J, Mizerska-Wasiak M, Caliskan Y, Fasel D, Karnib HH, Bono L, Omran SA, Sabban EA, Kiryluk K, Caridi G, Ghiggeri GM, Sanna-Cherchi S, Scolari F, and Gharavi AG
- Published
- 2020
- Full Text
- View/download PDF
45. The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis.
- Author
-
Xie J, Liu L, Mladkova N, Li Y, Ren H, Wang W, Cui Z, Lin L, Hu X, Yu X, Xu J, Liu G, Caliskan Y, Sidore C, Balderes O, Rosen RJ, Bodria M, Zanoni F, Zhang JY, Krithivasan P, Mehl K, Marasa M, Khan A, Ozay F, Canetta PA, Bomback AS, Appel GB, Sanna-Cherchi S, Sampson MG, Mariani LH, Perkowska-Ptasinska A, Durlik M, Mucha K, Moszczuk B, Foroncewicz B, Pączek L, Habura I, Ars E, Ballarin J, Mani LY, Vogt B, Ozturk S, Yildiz A, Seyahi N, Arikan H, Koc M, Basturk T, Karahan G, Akgul SU, Sever MS, Zhang D, Santoro D, Bonomini M, Londrino F, Gesualdo L, Reiterova J, Tesar V, Izzi C, Savoldi S, Spotti D, Marcantoni C, Messa P, Galliani M, Roccatello D, Granata S, Zaza G, Lugani F, Ghiggeri G, Pisani I, Allegri L, Sprangers B, Park JH, Cho B, Kim YS, Kim DK, Suzuki H, Amoroso A, Cattran DC, Fervenza FC, Pani A, Hamilton P, Harris S, Gupta S, Cheshire C, Dufek S, Issler N, Pepper RJ, Connolly J, Powis S, Bockenhauer D, Stanescu HC, Ashman N, Loos RJF, Kenny EE, Wuttke M, Eckardt KU, Köttgen A, Hofstra JM, Coenen MJH, Kiemeney LA, Akilesh S, Kretzler M, Beck LH, Stengel B, Debiec H, Ronco P, Wetzels JFM, Zoledziewska M, Cucca F, Ionita-Laza I, Lee H, Hoxha E, Stahl RAK, Brenchley P, Scolari F, Zhao MH, Gharavi AG, Kleta R, Chen N, and Kiryluk K
- Subjects
- Alleles, Amino Acid Sequence, Asian People genetics, Case-Control Studies, Glomerulonephritis, Membranous immunology, Humans, Interferon Regulatory Factors genetics, Models, Molecular, NF-kappa B p50 Subunit genetics, Polymorphism, Single Nucleotide, Receptors, Phospholipase A2 genetics, White People genetics, Genome-Wide Association Study, Glomerulonephritis, Membranous diagnosis, Glomerulonephritis, Membranous genetics
- Abstract
Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10
-12 ) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10-14 ), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10-103 ) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49 ), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93 ), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82 , respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk.- Published
- 2020
- Full Text
- View/download PDF
46. Integrative analysis of rare copy number variants and gene expression data in alopecia areata implicates an aetiological role for autophagy.
- Author
-
Petukhova L, Patel AV, Rigo RK, Bian L, Verbitsky M, Sanna-Cherchi S, Erjavec SO, Abdelaziz AR, Cerise JE, Jabbari A, and Christiano AM
- Subjects
- Autophagy-Related Proteins genetics, Cysteine Endopeptidases genetics, Gene Expression Profiling, Genome-Wide Association Study, Genotype, Hair pathology, Hair Follicle physiology, Humans, Mutation, Polymerase Chain Reaction, Polymorphism, Single Nucleotide, Scalp pathology, Transcription Factors genetics, Alopecia Areata genetics, Alopecia Areata immunology, Autophagy, DNA Copy Number Variations, Gene Dosage
- Abstract
Alopecia areata (AA) is a highly prevalent autoimmune disease that attacks the hair follicle and leads to hair loss that can range from small patches to complete loss of scalp and body hair. Our previous linkage and genome-wide association studies (GWAS) generated strong evidence for aetiological contributions from inherited genetic variants at different population frequencies, including both rare mutations and common polymorphisms. Additionally, we conducted gene expression (GE) studies on scalp biopsies of 96 patients and controls to establish signatures of active disease. In this study, we performed an integrative analysis on these two datasets to test the hypothesis that rare CNVs in patients with AA could be leveraged to identify drivers of disease in our AA GE signatures. We analysed copy number variants (CNVs) in a case-control cohort of 673 patients with AA and 16 311 controls independent of the case-control cohort of 96 research participants used in our GE study. Using an integrative computational analysis, we identified 14 genes whose expression levels were altered by CNVs in a consistent direction of effect, corresponding to gene expression changes in lesional skin of patients. Four of these genes were affected by CNVs in three or more unrelated patients with AA, including ATG4B and SMARCA2, which are involved in autophagy and chromatin remodelling, respectively. Our findings identified new classes of genes with potential contributions to AA pathogenesis., (© 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
47. Duplication of The SOX3 Gene in an Sry-negative 46,XX Male with Associated Congenital Anomalies of Kidneys and the Urinary Tract: Case Report and Review of the Literature.
- Author
-
Tasic V, Mitrotti A, Riepe FG, Kulle AE, Laban N, Polenakovic M, Plaseska-Karanfilska D, Sanna-Cherchi S, Kostovski M, and Gucev Z
- Abstract
Disorders of sex development (DSD) are a group of rare conditions characterized by discrepancy between chromosomal sex, gonads and external genitalia. Congenital abnormalities of the kidney and urinary tract are often associated with DSD, mostly in multiple malformation syndromes. We describe the case of an 11-year-old Caucasian boy, with right kidney hypoplasia and hypospadias. Genome-wide copy number variation (CNV) analysis revealed a unique duplication of about 550 kb on chromosome Xq27, and a 46,XX karyotype, consistent with a sex reversal phenotype. This region includes multiple genes, and, among these, SOX3 emerged as the main phenotypic driver. This is the fifth case reporting a genomic imbalance involving the SOX3 gene in a 46,XX SRY-negative male, and the first with associated renal malformations. Our data provide plausible links between SOX3 gene dosage and kidney malformations. It is noteworthy that the current and reported SOX3 gene duplications are below the detection threshold of standard karyotypes and were found only by analyzing CNVs using DNA microarrays. Therefore, all 46,XX SRY-negative males should be screened for SOX3 gene duplications with DNA microarrays.
- Published
- 2019
- Full Text
- View/download PDF
48. Immunohistochemical expression pattern of RIP5, FGFR1, FGFR2 and HIP2 in the normal human kidney development.
- Author
-
Racetin A, Raguž F, Durdov MG, Kunac N, Saraga M, Sanna-Cherchi S, Šoljić V, Martinović V, Petričević J, Kostić S, Mardešić S, Tomaš SZ, Kablar B, Restović I, Lozić M, Filipović N, Saraga-Babić M, and Vukojević K
- Subjects
- Fluorescent Antibody Technique, Humans, Kidney embryology, Kidney metabolism, Receptor, Fibroblast Growth Factor, Type 1 biosynthesis, Receptor, Fibroblast Growth Factor, Type 2 biosynthesis, Receptor-Interacting Protein Serine-Threonine Kinases biosynthesis, Ubiquitin-Conjugating Enzymes biosynthesis
- Abstract
Aim: Present study analyses the co-localisation of RIP5 with FGFR1, FGFR2 and HIP2 in the developing kidney, as RIP5 is a major determinant of urinary tract development, downstream of FGF-signaling., Methods: Paraffin embedded human kidney tissues of 16 conceptuses between the 6th-22th developmental week were analysed using double-immunofluorescence method with RIP5/FGFR1/FGFR2 and HIP2 markers. Quantification of positive cells were performed using Kruskal-Wallis test., Results: In the 6th week of kidney development RIP5 (89.6%) and HIP2 (39.6%) are strongly expressed in the metanephric mesenchyme. FGFR1 shows moderate/strong expression in the developing nephrons (87.3%) and collecting ducts (70.5%) (p < 0.05). RIP5/FGFR1 co-localized at the marginal zone and the ureteric bud with predominant FGFR1 expression. FGFR2 (26.1%) shows similar expression pattern as FGFR1 (70.5%) in the same kidney structures. RIP5/FGFR2 co-localized at the marginal zone and the collecting ducts (predominant expression of FGFR2). HIP2 is strongly expressed in collecting ducts (96.7%), and co-localized with RIP5. In 10th week, RIP5 expression decrease (74.2%), while the pattern of expression of RIP5 and FGFR1 in collecting ducts (33.4% and 91.9%) and developing nephrons (21.9% and 32.4%) (p < 0.05) is similar to that in the 6th developmental week. Ureter is moderately expressing RIP5 while FGFR1 is strongly expressed in the ureteric wall. FGFR2 is strongly expressed in the collecting ducts (84.3%) and ureter. HIP2 have 81.1% positive cells in the collecting duct. RIP5/FGFR1 co-localize in collecting ducts and Henley's loop., Conclusions: The expression pattern of RIP5, FGFR1, FGFR2 and HIP2 in the human kidney development might indicate their important roles in metanephric development and ureteric muscle layer differentiation through FGF signaling pathways., (Copyright © 2019 Elsevier GmbH. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
49. Exome-Based Rare-Variant Analyses in CKD.
- Author
-
Cameron-Christie S, Wolock CJ, Groopman E, Petrovski S, Kamalakaran S, Povysil G, Vitsios D, Zhang M, Fleckner J, March RE, Gelfman S, Marasa M, Li Y, Sanna-Cherchi S, Kiryluk K, Allen AS, Fellström BC, Haefliger C, Platt A, Goldstein DB, and Gharavi AG
- Subjects
- Case-Control Studies, Female, Humans, Male, Prognosis, Protein Kinase D2, Reference Values, Renal Insufficiency, Chronic diagnosis, Collagen Type IV genetics, Genetic Variation genetics, Protein Kinases genetics, Renal Insufficiency, Chronic genetics, TRPP Cation Channels genetics, Exome Sequencing
- Abstract
Background: Studies have identified many common genetic associations that influence renal function and all-cause CKD, but these explain only a small fraction of variance in these traits. The contribution of rare variants has not been systematically examined., Methods: We performed exome sequencing of 3150 individuals, who collectively encompassed diverse CKD subtypes, and 9563 controls. To detect causal genes and evaluate the contribution of rare variants we used collapsing analysis, in which we compared the proportion of cases and controls carrying rare variants per gene., Results: The analyses captured five established monogenic causes of CKD: variants in PKD1 , PKD2 , and COL4A5 achieved study-wide significance, and we observed suggestive case enrichment for COL4A4 and COL4A3 . Beyond known disease-associated genes, collapsing analyses incorporating regional variant intolerance identified suggestive dominant signals in CPT2 and several other candidate genes. Biallelic mutations in CPT2 cause carnitine palmitoyltransferase II deficiency, sometimes associated with rhabdomyolysis and acute renal injury. Genetic modifier analysis among cases with APOL1 risk genotypes identified a suggestive signal in AHDC1 , implicated in Xia-Gibbs syndrome, which involves intellectual disability and other features. On the basis of the observed distribution of rare variants, we estimate that a two- to three-fold larger cohort would provide 80% power to implicate new genes for all-cause CKD., Conclusions: This study demonstrates that rare-variant collapsing analyses can validate known genes and identify candidate genes and modifiers for kidney disease. In so doing, these findings provide a motivation for larger-scale investigation of rare-variant risk contributions across major clinical CKD categories., (Copyright © 2019 by the American Society of Nephrology.)
- Published
- 2019
- Full Text
- View/download PDF
50. The relationship between the presence of antibodies and direct detection of Toxoplasma gondii in slaughtered calves and cattle in four European countries.
- Author
-
Opsteegh M, Spano F, Aubert D, Balea A, Burrells A, Cherchi S, Cornelissen JBWJ, Dam-Deisz C, Guitian J, Györke A, Innes EA, Katzer F, Limon G, Possenti A, Pozio E, Schares G, Villena I, Wisselink HJ, and van der Giessen JWB
- Subjects
- Animals, Cattle, Cattle Diseases parasitology, Diaphragm parasitology, Europe, Immunoassay methods, Immunoglobulin G blood, Liver parasitology, Molecular Diagnostic Techniques methods, Sensitivity and Specificity, Serum immunology, Serum parasitology, Toxoplasmosis, Animal parasitology, Antibodies, Protozoan blood, Cattle Diseases diagnosis, Diagnostic Tests, Routine methods, Toxoplasma isolation & purification, Toxoplasmosis, Animal diagnosis
- Abstract
In cattle, antibodies to Toxoplasma gondii infection are frequently detected, but evidence for the presence of T. gondii tissue cysts in cattle is limited. To study the concordance between the presence of anti-T. gondii IgG and viable tissue cysts of T. gondii in cattle, serum, liver and diaphragm samples of 167 veal calves and 235 adult cattle were collected in Italy, the Netherlands, Romania and the United Kingdom. Serum samples were tested for anti-T. gondii IgG by the modified agglutination test and p30 immunoblot. Samples from liver were analyzed by mouse bioassay and PCR after trypsin digestion. In addition, all diaphragms of cattle that had tested T. gondii-positive (either in bioassay, by PCR on trypsin-digested liver or serologically by MAT) and a selection of diaphragms from cattle that had tested negative were analyzed by magnetic capture quantitative PCR (MC-PCR). Overall, 13 animals were considered positive by a direct detection method: seven out of 151 (4.6%) by MC-PCR and six out of 385 (1.6%) by bioassay, indicating the presence of viable parasites. As cattle that tested positive in the bioassay tested negative by MC-PCR and vice-versa, these results demonstrate a lack of concordance between the presence of viable parasites in liver and the detection of T. gondii DNA in diaphragm. In addition, the probability to detect T. gondii parasites or DNA in seropositive and seronegative cattle was comparable, demonstrating that serological testing by MAT or p30 immunoblot does not provide information about the presence of T. gondii parasites or DNA in cattle and therefore is not a reliable indicator of the risk for consumers., (Copyright © 2019 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.