4 results on '"Cyrus, Sharri"'
Search Results
2. DNA Methylation Signature for EZH2 Functionally Classifies Sequence Variants in Three PRC2 Complex Genes.
- Author
-
Choufani S, Gibson WT, Turinsky AL, Chung BHY, Wang T, Garg K, Vitriolo A, Cohen ASA, Cyrus S, Goodman S, Chater-Diehl E, Brzezinski J, Brudno M, Ming LH, White SM, Lynch SA, Clericuzio C, Temple IK, Flinter F, McConnell V, Cushing T, Bird LM, Splitt M, Kerr B, Scherer SW, Machado J, Imagawa E, Okamoto N, Matsumoto N, Testa G, Iascone M, Tenconi R, Caluseriu O, Mendoza-Londono R, Chitayat D, Cytrynbaum C, Tatton-Brown K, and Weksberg R
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Cohort Studies, Female, Humans, Infant, Male, Mosaicism, Mutation, Missense genetics, Neoplasm Proteins, Reproducibility of Results, Transcription Factors, Young Adult, Abnormalities, Multiple genetics, Congenital Hypothyroidism genetics, Craniofacial Abnormalities genetics, DNA Methylation, Enhancer of Zeste Homolog 2 Protein genetics, Hand Deformities, Congenital genetics, Intellectual Disability genetics, Mutation, Polycomb Repressive Complex 2 genetics
- Abstract
Weaver syndrome (WS), an overgrowth/intellectual disability syndrome (OGID), is caused by pathogenic variants in the histone methyltransferase EZH2, which encodes a core component of the Polycomb repressive complex-2 (PRC2). Using genome-wide DNA methylation (DNAm) data for 187 individuals with OGID and 969 control subjects, we show that pathogenic variants in EZH2 generate a highly specific and sensitive DNAm signature reflecting the phenotype of WS. This signature can be used to distinguish loss-of-function from gain-of-function missense variants and to detect somatic mosaicism. We also show that the signature can accurately classify sequence variants in EED and SUZ12, which encode two other core components of PRC2, and predict the presence of pathogenic variants in undiagnosed individuals with OGID. The discovery of a functionally relevant signature with utility for diagnostic classification of sequence variants in EZH2, EED, and SUZ12 supports the emerging paradigm shift for implementation of DNAm signatures into diagnostics and translational research., (Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
3. PRC2-complex related dysfunction in overgrowth syndromes: A review of EZH2, EED, and SUZ12 and their syndromic phenotypes.
- Author
-
Cyrus S, Burkardt D, Weaver DD, and Gibson WT
- Subjects
- Humans, Neoplasm Proteins, Syndrome, Transcription Factors, Enhancer of Zeste Homolog 2 Protein genetics, Growth Disorders genetics, Phenotype, Polycomb Repressive Complex 2 genetics
- Abstract
The EZH2, EED, and SUZ12 genes encode proteins that comprise core components of the polycomb repressive complex 2 (PRC2), an epigenetic "writer" with H3K27 methyltransferase activity, catalyzing the addition of up to three methyl groups on histone 3 at lysine residue 27 (H3K27). Partial loss-of-function variants in genes encoding the EZH2 and EED subunits of the complex lead to overgrowth, macrocephaly, advanced bone age, variable intellectual disability, and distinctive facial features. EZH2-associated overgrowth, caused by constitutional heterozygous mutations within Enhancer of Zeste homologue 2 (EZH2), has a phenotypic spectrum ranging from tall stature without obvious intellectual disability or dysmorphic features to classical Weaver syndrome (OMIM #277590). EED-associated overgrowth (Cohen-Gibson syndrome; OMIM #617561) is caused by germline heterozygous mutations in Embryonic Ectoderm Development (EED), and manifests overgrowth and intellectual disability (OGID), along with other features similar to Weaver syndrome. Most recently, rare coding variants in SUZ12 have also been described that present with clinical characteristics similar to the previous two syndromes. Here we review the PRC2 complex and clinical syndromes of OGID associated with core components EZH2, EED, and SUZ12., (© 2019 Wiley Periodicals, Inc.)
- Published
- 2019
- Full Text
- View/download PDF
4. Rare SUZ12 variants commonly cause an overgrowth phenotype.
- Author
-
Cyrus SS, Cohen ASA, Agbahovbe R, Avela K, Yeung KS, Chung BHY, Luk HM, Tkachenko N, Choufani S, Weksberg R, Lopez-Rangel E, Brown K, Saenz MS, Svihovec S, McCandless SE, Bird LM, Garcia AG, Gambello MJ, McWalter K, Schnur RE, An J, Jones SJM, Bhalla SK, Pinz H, Braddock SR, and Gibson WT
- Subjects
- Child, Child, Preschool, Female, Humans, Infant, Infant, Newborn, Intellectual Disability genetics, Male, Mutation, Neoplasm Proteins, Transcription Factors, Growth Disorders genetics, Phenotype, Polycomb Repressive Complex 2 genetics
- Abstract
The Polycomb repressive complex 2 is an epigenetic writer and recruiter with a role in transcriptional silencing. Constitutional pathogenic variants in its component proteins have been found to cause two established overgrowth syndromes: Weaver syndrome (EZH2-related overgrowth) and Cohen-Gibson syndrome (EED-related overgrowth). Imagawa et al. (2017) initially reported a singleton female with a Weaver-like phenotype with a rare coding SUZ12 variant-the same group subsequently reported two additional affected patients. Here we describe a further 10 patients (from nine families) with rare heterozygous SUZ12 variants who present with a Weaver-like phenotype. We report four frameshift, two missense, one nonsense, and two splice site variants. The affected patients demonstrate variable pre- and postnatal overgrowth, dysmorphic features, musculoskeletal abnormalities and developmental delay/intellectual disability. Some patients have genitourinary and structural brain abnormalities, and there may be an association with respiratory issues. The addition of these 10 patients makes a compelling argument that rare pathogenic SUZ12 variants frequently cause overgrowth, physical abnormalities, and abnormal neurodevelopmental outcomes in the heterozygous state. Pathogenic SUZ12 variants may be de novo or inherited, and are sometimes inherited from a mildly-affected parent. Larger samples sizes will be needed to elucidate whether one or more clinically-recognizable syndromes emerge from different variant subtypes., (© 2019 Wiley Periodicals, Inc.)
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.