8 results on '"GUO Xianghong"'
Search Results
2. Elevated Serum Ninjurin-1 Is Associated with a High Risk of Large Artery Atherosclerotic Acute Ischemic Stroke.
- Author
-
Dong N, Wu X, Hong T, Shen X, Guo X, Wang H, Yu L, Zhao H, and Fang Q
- Subjects
- Humans, Risk Factors, Stroke complications, Ischemic Stroke complications, Brain Ischemia complications, Atherosclerosis complications
- Abstract
Ninjurin-1 is a novel adhesion molecule which is involved in many inflammatory diseases. Functional blockage of Ninjurin-1 has exerted an atheroprotective effect. The aim of the study is to explore the association between serum Ninjurin-1 and the risk of large artery atherosclerotic acute ischemic stroke. From August 2020 through December 2021, patients with large artery atherosclerotic acute ischemic stroke (LAA-AIS) admitted to the First Hospital Affiliated to Soochow University, and age- and sex-matched controls free of ischemic stroke were recruited. Serum Ninj1 was measured with an enzyme-linked immunosorbent assay. Multivariable logistic regression models were used to calculate the odds ratios and 95% confidence intervals of LAA-AIS associated with serum Ninj1 levels, and receiver operating characteristic (ROC) curves were performed to assess the improvement value of Ninj1 for the prediction of LAA-AIS after adding Ninj1 to established risk factors. Of the 110 patients and 110 age- and sex-matched controls free of ischemic stroke enrolled, serum Ninj1 levels in LAA-AIS patients were significantly higher than that in control group (142.70 ng/ml [IQR: 110.41-163.44] vs 101.62 ng/ml [IQR: 86.63-120.86], p < 0.001). In multivariable analysis, Ninj1 levels were expressed as continuous variable and ordinal variable (tertiles), and it turned out that Ninj1 levels were positively associated with increased risk of LAA-AIS, especially in tertile3 compared with tertile1 (adjusted OR = 12.567, 95%CI: 5.148-30.678, p < 0.001), and the adjusted odds OR per 10 ng/ml increment was 1.541, 95%CI: 1.348-1.763, p < 0.001. Furthermore, adding Ninj1 to a multivariate logistic model including conventional risk factors associated LAA-AIS improved the area under ROC curves from 0.787 to 0.874. Elevated circulating levels of Ninj1 were associated with increased risk of LAA-AIS, indicating that serum Ninj1 may act as a predictor independent of established conventional risk factors., (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
3. Evaluation of Physicochemical Properties of Sustained-Release Membranes Based on Analytic Hierarchy.
- Author
-
Sun H, Lei T, Guo X, Liu J, and Lv J
- Abstract
In this paper, the optimal analytic hierarchy process was used to establish a comprehensive evaluation model for the physicochemical properties of composite sustained-release membrane materials based on water absorption ( XS ), water permeability ( TS ), tensile strength ( KL ), elongation at break ( DSL ), fertilizer permeability ( TF ), and viscosity ( ND ), and the optimal ratio parameters of membrane material were determined. Analytic hierarchy process (AHP) combined with correlation analysis was used to construct the judgment matrix of physicochemical properties, which passed the consistency test, and to determine the weight and ranking of each index: TF (0.6144) > XS (0.1773) > KL (0.1561) > ND (0.1311) > TS (0.0775) > DSL (0.0520). The comprehensive scores of sustained-release membrane materials under different treatments were calculated based on normalized data samples and weights. It was determined that the percentage of each component in the best comprehensive performance of the slow-release membrane material was as follows: polyvinyl alcohol, polyvinylpyrrolidone, zeolite, and epoxy resin were 7.3%, 0.7%, 0.5%, and 2%, respectively.
- Published
- 2023
- Full Text
- View/download PDF
4. Physicochemical Properties of Water-Based Copolymer and Zeolite Composite Sustained-Release Membrane Materials.
- Author
-
Sun H, Lei T, Liu J, Guo X, and Lv J
- Abstract
A nitrogen fertilizer slow-release membrane was proposed using polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), epoxy resin, and zeolite as raw materials. The effects of the water-based copolymer (PVA:PVP) solution ratio A (A1−A4) and zeolite amount B (B1−B4) on the water absorption rate (XS), water permeability (TS), fertilizer permeability (TF), tensile strength (KL), elongation at break (DSL), and viscosity (ND) of the membrane were explored using the swelling method, a self-made device, and a universal testing machine. The optimal combination of the water-based copolymer and zeolite amount was determined by the coefficient-of-variation method. The results show that the effects of the decrease in A on KL and the increase in B on KL and DSL are promoted first and then inhibited. DSL and ND showed a negative response to the A decrease, whereas XS, TS, and TF showed a positive response. The effect of increasing B on ND, TS, and TF showed a zigzag fluctuation. In the condition of A1−A3, XS showed a negative response to the B increase, whereas in the condition of A4, XS was promoted first and then inhibited. Adding PVP and zeolite caused the hydroxyl stretching vibration peak of PVA at 3300 cm−1 to widen; the former caused the vibration peak to move to low frequencies, and the latter caused it to move to high frequencies. The XRD pattern shows that the highest peak of zeolite is located at 2θ = 7.18° and the crystallization peak of the composite membrane increases with the rise in the proportion of zeolite. Adding PVP made the surface of the membrane smooth and flat, and adding a small amount of zeolite improved the mechanical properties of the membrane and exhibited good compatibility with water-based copolymers. In the evaluation model of the physicochemical properties of sustained-release membrane materials, the weight of all indicators was in the following order: TF > ND > TS > KL > XL > DSL. The optimal membrane material for comprehensive performance was determined to be A2B3.
- Published
- 2022
- Full Text
- View/download PDF
5. Rhino-Orbital Cerebral Mucormycosis in a Patient With Diabetic Ketoacidosis: A Case Report and Literature Review.
- Author
-
Dong N, Jordan AE, Shen X, Wu X, Guo X, Zhao H, Wang Y, Wang D, and Fang Q
- Abstract
Background: Rhino-orbital cerebral mucormycosis (ROCM) is a rare, invasive, and fatal fungal disease. Due to the lack of specific clinical manifestations and adequate auxiliary examinations, patients are easily misdiagnosed in the early stage. Early diagnosis and timely therapy are essential for successful treatment., Case Report: We report a 68-year-old man with diabetic ketoacidosis, presented with orbital apex syndrome (OAS), fever, and pansinusitis, which progressively worsened to death only 4 days after admission. It was finally confirmed as a fungal Rhizopus arrhizus infection by metagenomics cell-free DNA next-generation sequencing (mNGS) testing., Conclusion: Orbital apex syndrome could be the initial presentation for mucormycosis. Thus, it is necessary to evaluate the presence of mucormycosis in patients with OAS, especially in diabetic or immunosuppressed hosts, and mNGS testing and timely antifungal therapy should be strongly recommended in highly suspected cases., Competing Interests: YW was employed by Genoxor Medical Science and Technology Inc. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Dong, Jordan, Shen, Wu, Guo, Zhao, Wang, Wang and Fang.)
- Published
- 2022
- Full Text
- View/download PDF
6. Elevated Glycated Hemoglobin Levels Are Associated With Poor Outcome in Acute Ischemic Stroke.
- Author
-
Dong N, Shen X, Wu X, Guo X, and Fang Q
- Abstract
Objective: Admission hyperglycemia is an established risk factor for functional outcome in patients with acute ischemic stroke. However, the association between glycated hemoglobin (HbA1c) and prognosis in patients with acute anterior circulation ischemic stroke (AACIS) remains controversial. This study aimed to explore whether elevated HbA1c levels are associated with functional outcome in AACIS patients., Participants and Methods: We enrolled patients with AACIS hospitalized in the First Hospital Affiliated to Soochow University from March 2018 to January 2021. Patients were categorized into three groups based on baseline HbA1c: HbA1c ≤ 6.5%, 6.5% < HbA1c ≤ 8.0%, and HbA1c > 8.0%. Ninety-day modified Rankin Scale scores of 0-1 and 0-2 were defined as excellent and favorable functional outcome, respectively. Early neurological improvement was regarded as a reduction in the National Institutes of Health Stroke Scale (NIHSS) score ≥ 4 points compared with that on admission, or an NIHSS score of 0-1 at discharge. The association between HbA1c and clinical outcome in acute ischemic patients was assessed by logistic regression and adjusted for confounding factors. Subgroup analyses by TOAST classification were also conducted., Results: The study included 326 patients. The proportion with favorable outcome was significantly lower in the HbA1c > 8.0% group than the HbA1c ≤ 6.5% group (30.4 vs. 55.2%; p < 0.01). Binary logistic regression analysis demonstrated that increasing HbA1c levels (as a continuous variable) were associated with reduced functional independence (adjusted OR = 0.739; 95% CI: 0.605-0.904; p = 0.003). In subgroup analyses, higher HbA1c was also associated with favorable outcome in large-artery atherosclerosis (LAA)-type patients (adjusted OR = 0.776; 95% CI: 0.614-0.981; p = 0.034), but not in LAA group., Conclusions: HbA1c level was an independent predictor of worse functional outcome in patients with AACIS, particularly in those with LAA. For patients with anterior circulation atherosclerosis, strict adherence to a target HbA1c < 6.5% may be required., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Dong, Shen, Wu, Guo and Fang.)
- Published
- 2022
- Full Text
- View/download PDF
7. Kinetics and thermodynamics of urea hydrolysis under the coupling of nitrogen application rate and temperature.
- Author
-
Lei T, Guo X, Ma J, and Sun X
- Subjects
- Entropy, Environmental Pollution, Fertilizers, Hydrolysis, Kinetics, Proteins, Thermodynamics, Nitrogen chemistry, Soil chemistry, Temperature, Urea chemistry
- Abstract
This study aimed to determine the coupled effects of temperature and urea application rate on kinetic and thermodynamic parameters to supplement the mechanism of urea hydrolysis and modify the Arrhenius model to improve the prediction accuracy of urea content. Laboratory experiments were conducted for sandy loam soil under different temperatures (T) (288, 293, 298, and 308 K) and urea application rates (F) (247, 309, 371, and 433 mg kg
-1 ). Urea content was determined daily through high-performance liquid chromatography. Results showed that the interaction between temperature and urea application rate had a significant effect on reaction rate (Ku ) and half-life (H1/2 ), whereas no significant effect on activation degree (lgN), activation free energy (ΔG), activation enthalpy (ΔH), and activation entropy (ΔS). The new Ku (T)-2 model with a determination coefficient (R2 ) = 0.990 was more accurate than the Arrhenius model with R2 = 0.965. The new U(T, F) model with a mean absolute percentage error (MAPE) = 3.62% was more accurate than the traditional U(T) model with a MAPE = 6.38%. The effects of T and F were observed mainly during the preparatory stage and the most critical transition stage of the chemical reaction, respectively. The findings ΔH > 0, ΔG > 0, and ΔS < 0 indicated that urea hydrolysis was endothermic and controlled by enthalpy. These results supplemented the mechanism of urea hydrolysis and improved the prediction accuracy of urea content.- Published
- 2018
- Full Text
- View/download PDF
8. Prediction of soil urea conversion and quantification of the importance degrees of influencing factors through a new combinatorial model based on cluster method and artificial neural network.
- Author
-
Lei T, Guo X, Sun X, Ma J, Zhang S, and Zhang Y
- Subjects
- Cluster Analysis, Electric Conductivity, Temperature, Neural Networks, Computer, Nitrogen analysis, Soil chemistry, Urea chemistry
- Abstract
Quantitative prediction of soil urea conversion is crucial in determining the mechanism of nitrogen transformation and understanding the dynamics of soil nutrients. This study aimed to establish a combinatorial prediction model (MCA-F-ANN) for soil urea conversion and quantify the relative importance degrees (RIDs) of influencing factors with the MCA-F-ANN method. Data samples were obtained from laboratory culture experiments, and soil nitrogen content and physicochemical properties were measured every other day. Results showed that when MCA-F-ANN was used, the mean-absolute-percent error values of NH
4 + -N, NO3 - -N, and NH3 contents were 3.180%, 2.756%, and 3.656%, respectively. MCA-F-ANN predicted urea transformation under multi-factor coupling conditions more accurately than traditional models did. The RIDs of reaction time (RT), electrical conductivity (EC), temperature (T), pH, nitrogen application rate (F), and moisture content (W) were 32.2%-36.5%, 24.0%-28.9%, 12.8%-15.2%, 9.8%-12.5%, 7.8%-11.0%, and 3.5%-6.0%, respectively. The RIDs of the influencing factors in a descending order showed the pattern RT > EC > T > pH > F > W. RT and EC were the key factors in the urea conversion process. The prediction accuracy of urea transformation process was improved, and the RIDs of the influencing factors were quantified., (Copyright © 2018 Elsevier Ltd. All rights reserved.)- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.