1. Liquid Metal Doping Induced Asymmetry in Two-Dimensional Metal Oxides.
- Author
-
Ghasemian MB, Zavabeti A, Allioux FM, Sharma P, Mousavi M, Rahim MA, Khayyam Nekouei R, Tang J, Christofferson AJ, Meftahi N, Rafiezadeh S, Cheong S, Koshy P, Tilley RD, McConville CF, Russo SP, Ton-That C, Seidel J, and Kalantar-Zadeh K
- Abstract
The emergence of ferroelectricity in two-dimensional (2D) metal oxides is a topic of significant technological interest; however, many 2D metal oxides lack intrinsic ferroelectric properties. Therefore, introducing asymmetry provides access to a broader range of 2D materials within the ferroelectric family. Here, the generation of asymmetry in 2D SnO by doping the material with Hf
0.5 Zr0.5 O2 (HZO) is demonstrated. A liquid metal process as a doping strategy for the preparation of 2D HZO-doped SnO with robust ferroelectric characteristics is implemented. This technology takes advantage of the selective interface enrichment of molten Sn with HZO crystallites. Molecular dynamics simulations indicate a strong tendency of Hf and Zr atoms to migrate toward the surface of liquid metal and embed themselves within the growing oxide layer in the form of HZO. Thus, the liquid metal-based harvesting/doping technique is a feasible approach devised for producing novel 2D metal oxides with induced ferroelectric properties, represents a significant development for the prospects of random-access memories., (© 2024 The Authors. Small published by Wiley‐VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF