1. Detection of Schizophrenia from EEG Signals using Selected Statistical Moments of MFC Coefficients and Ensemble Learning.
- Author
-
Tyagi A, Singh VP, and Gore MM
- Abstract
Schizophrenia is a mental disorder characterized by neurophysiological dysfunctions that result in disturbances in thinking, perception, and behavior. Early identification of schizophrenia can help prevent potential complications and facilitate effective treatment and management of the condition. This paper proposes a computer aided diagnosis system for the early detection of schizophrenia using 19-channel Electroencephalography (EEG) signals from 28 subjects, leveraging statistical moments of Mel-frequency Cepstral Coefficients (MFCC) and ensemble learning. Initially, the EEG signals are passed through a high-pass filter to mitigate noise and remove extraneous data. The feature extraction technique is then employed to extract MFC coefficients from the filtered EEG signals. The dimensionality of these coefficients is reduced by computing their statistical moments, which include the mean, standard deviation, skewness, kurtosis, and energy. Subsequently, the Support Vector Machine based Recursive Feature Elimination (SVM-RFE) is applied to identify pertinent features from the statistical moments of the MFC coefficients. These SVM-RFE-based selected features serve as input for three base classifiers: Support Vector Machine, k-Nearest Neighbors, and Logistic Regression. Additionally, an ensemble learning approach, which combines the predictions of the three classifiers through majority voting, is introduced to enhance schizophrenia detection performance and generalize the results of the proposed approach. The study's findings demonstrate that the ensemble model, combined with SVM-RFE-based selected statistical moments of MFCC, achieves encouraging detection performance, highlighting the potential of machine learning techniques in advancing the diagnostic process of schizophrenia., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF