1. Reduced Sensitivity to Charge Noise in Semiconductor Spin Qubits via Symmetric Operation.
- Author
-
Reed MD, Maune BM, Andrews RW, Borselli MG, Eng K, Jura MP, Kiselev AA, Ladd TD, Merkel ST, Milosavljevic I, Pritchett EJ, Rakher MT, Ross RS, Schmitz AE, Smith A, Wright JA, Gyure MF, and Hunter AT
- Abstract
We demonstrate improved operation of exchange-coupled semiconductor quantum dots by substantially reducing the sensitivity of exchange operations to charge noise. The method involves biasing a double dot symmetrically between the charge-state anticrossings, where the derivative of the exchange energy with respect to gate voltages is minimized. Exchange remains highly tunable by adjusting the tunnel coupling. We find that this method reduces the dephasing effect of charge noise by more than a factor of 5 in comparison to operation near a charge-state anticrossing, increasing the number of observable exchange oscillations in our qubit by a similar factor. Performance also improves with exchange rate, favoring fast quantum operations.
- Published
- 2016
- Full Text
- View/download PDF