20 results on '"Han, Jiale"'
Search Results
2. Effects of Hydrogen Bond Networks on Viscosity in Aqueous Solutions.
- Author
-
Gao Y, Wu J, Feng Y, Han J, and Fang H
- Abstract
In aqueous solutions, the impact of ions on hydrogen bond networks plays a crucial role in transport properties. We used molecular dynamics simulations to explain how ions affect viscosity through structural changes. We developed a quantitative model to describe the effect of ions on viscosity. The model comprises two parts: the addition of ions alters hydrogen bond networks, and changes in hydrogen bond networks exponentially lead to changes in viscosity. The influence of ions on hydrogen bond networks involves the following mechanisms: first, ions can disrupt the tetrahedral structures within the first solvation shell into three-coordinated structures through substitution; second, structural changes within the first shells affect the global hydrogen bond network through electrostatic forces and the hindrance of ionic volumes. By analyzing the mechanisms of how hydrogen bond networks determine viscosity through the decomposition of viscosity, we found that the proportion of potential viscosity in aqueous solutions primarily increases due to the enhancement of non-hydrogen bonding interactions, and the proportion of hydrogen bonding viscosity decreases accordingly. Our results demonstrate that hydrogen bond networks are crucial for describing the changes in transport phenomena affected by external factors.
- Published
- 2024
- Full Text
- View/download PDF
3. Responsive-Hydrogel Aquabots.
- Author
-
Zhu S, Cui H, Pan Y, Popple D, Xie G, Fink Z, Han J, Zettl A, Cheung Shum H, and Russell TP
- Abstract
It remains a challenge to produce soft robots that can mimic the responsive adaptability of living organisms. Rather than fabricating soft robots from bulk hydrogels,hydrogels are integrated into the interfacial assembly of aqueous two-phase systems to generate ultra-soft and elastic all-aqueous aquabots that exhibit responsive adaptability, that can shrink on demand and have electrically conductive functions. The adaptive functions of the aquabots provide a new platform to develop minimally invasive surgical devices, targeted drug delivery systems, and flexible electronic sensors and actuators., (© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
4. Research Trends in the Comorbidity Between Periodontitis and Neurodegenerative Diseases.
- Author
-
Han J, Liu Y, Guo X, Gao G, and Wu Q
- Abstract
Introduction and Aims: Evidence suggests an association between periodontitis and neurodegenerative diseases, but a comprehensive analysis of research trends remains absent. Therefore, we aim to identify research trends and hotspots on the comorbidity between periodontitis and neurodegenerative diseases, understand mechanisms, provide guidance for subsequent studies and show its clinical translational possibility., Methods: A bibliometric analysis covering 1982 to 2023 was conducted using the Web of Science Core Collection. English-language articles range from January 1, 1982 to November 30, 2023 were analyzed. Data were downloaded on November 30, 2023 and analyzed on December, 2023. Data visualization and statistical analysis were performed to identify trends of annual publications, countries, sources, institutions, authors, most cited articles, and keywords by using Microsoft Excel, VOSviewer, Citespace, R-bibliometrix and Origin Pro., Results: A total of 1,238 articles from 1982 to 2023 on the comorbidity between periodontitis and neurodegenerative diseases were identified. Annual publications showed an upward trend. The United States, University College of London, BRAIN and Shy, Michael E. were the leading nation, affiliation, source and author, respectively. The United States, NEUROLOGY, and Curtis Maurice A. were the most cited nation, source, and author. Keywords network analysis highlighted 'Charcot-Marie-Tooth Disease', 'Alzheimer's Disease' and 'Periodontitis' as focal points. Detection of keywords citation bursts demonstrated 'Porphyromonas gingivalis' and 'Cognitive Dysfunction' as hot topics in recent research., Conclusions: In recent years, emerging interests of the comorbidity between periodontitis and neurodegenerative diseases (NDs) are growing. Our study enhances the understanding of recent research trends of periodontitis and NDs and provides valuable perspectives within this expanding field, offering new insights into research trends regarding the interplay between 'Porphyromonas gingivalis' and 'Cognitive Dysfunction'. Further research of the molecular mechanisms between P. gingivalis-induced periodontitis, neuroinflammation, that leads neurodegeneration are clearly warranted., Competing Interests: Conflict of interest None disclosed., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. Self-Propulsion by Directed Explosive Emulsification.
- Author
-
Wu X, Xue H, Bordia G, Fink Z, Kim PY, Streubel R, Han J, Helms BA, Ashby PD, Omar AK, and Russell TP
- Abstract
An active droplet system, programmed to repeatedly move autonomously at a specific velocity in a well-defined direction, is demonstrated. Coulombic energy is stored in oversaturated interfacial assemblies of charged nanoparticle-surfactants by an applied DC electric field and can be released on demand. Spontaneous emulsification is suppressed by an increase in the stiffness of the oversaturated assemblies. Rapidly removing the field releases the stored energy in an explosive event that propels the droplet, where thousands of charged microdroplets are ballistically ejected from the surface of the parent droplet. The ejection is made directional by a symmetry breaking of the interfacial assembly, and the combined interaction force of the microdroplet plume on one side of the droplet propels the droplet distances tens of times its size, making the droplet active. The propulsion is autonomous, repeatable, and agnostic to the chemical composition of the nanoparticles. The symmetry-breaking in the nanoparticle assembly controls the microdroplet velocity and direction of propulsion. This mechanism of droplet propulsion will advance soft micro-robotics, establishes a new type of active matter, and introduces new vehicles for compartmentalized delivery., (© 2024 Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
6. Structural effects of water clusters on viscosity at high shear rates.
- Author
-
Gao Y, Wu J, Feng Y, Han J, and Fang H
- Abstract
In this study, we use molecular dynamics simulations of liquid water to investigate how shear thinning affects the viscosity of liquid water by structural changes of the hydrogen bond network. The effect of shear on viscosity can be divided into two parts: shear-induced destruction of the hydrogen bond network and the influence of the water structure on shear viscosity. First, strong shear destroys tetrahedral structures and thus reduces the connectivity of the hydrogen bond network. It is mainly because shear deformation, characterized by compression and expansion axes, respectively, triggers the destruction and formation of hydrogen bonds, resulting in anisotropic effects on water structures. At the same time, shear destroys large clusters and enhances the formation of small ones, resulting in a decrease in average cluster sizes. Second, the change of viscosity obeys a power law relationship with the change of hydrogen bond structures, highlighting a one-to-one correspondence between structure and property. Meanwhile, in order to explain why the structure affects viscosity, we define hydrogen-bond viscosity and find that the cooperative motion of the water structures can promote momentum transfer in the form of aggregations. Hydrogen-bond viscosity accounts for 5%-50% of the total viscosity. Our results elucidate that water structures are the important structural units to explain the change of water properties., (© 2024 Author(s). Published under an exclusive license by AIP Publishing.)
- Published
- 2024
- Full Text
- View/download PDF
7. Resurrected and Tunable Conductivity and Ferromagnetism in the Secondary Growth La 0.7 Ca 0.3 MnO 3 on Transferred SrTiO 3 Membranes.
- Author
-
Guo J, He B, Han Y, Liu H, Han J, Ma X, Wang J, Gao W, and Lü W
- Abstract
To avoid the epitaxy dilemma in various thin films, such as complex oxide, silicon, organic, metal/alloy, etc., their stacking at an atomic level and secondary growth are highly desired to maximize the functionality of a promising electronic device. The ceramic nature of complex oxides and the demand for accurate and long-range-ordered stoichiometry face severe challenges. Here, the transport and magnetic properties of the La
0.7 Ca0.3 MnO3 (LCMO) secondary growth on single-crystal freestanding SrTiO3 (STO) membranes are demonstrated. It has been experimentally found that on an only 10 nm thick STO membrane, the LCMO can offer a bulk-like Curie temperature ( TC ) of 253 K and negative magnetoresistance of -64%, with a weak dependence on the thickness. The resurrected conductivity and ferromagnetism in LCMO confirm the advantages of secondary growth, which benefits from the excellent flexibility and transferability. Additionally, this study explores the integration strategy of complex oxides with other functional materials.- Published
- 2024
- Full Text
- View/download PDF
8. Pseudomonas fluorescens and L-tryptophan application triggered the phytoremediation potential of sunflower (Heliantus annuus L.) in lead-contaminated soil.
- Author
-
Jaffar MT, Mushtaq Z, Waheed A, Asghar HN, Zhang J, and Han J
- Subjects
- Animals, Humans, Lead analysis, Tryptophan, Biodegradation, Environmental, Soil, Helianthus, Pseudomonas fluorescens metabolism, Alphaproteobacteria metabolism, Soil Pollutants analysis
- Abstract
Lead, a toxic heavy metal present in soil, hampers biological activities and affects the metabolism of plants, animals, and human beings. Its higher concentration may disturb the various physio-chemical processes, which result in stunted and poor plant growth. An interactive approach of plant growth promoting rhizobacteria (PGPR) and L-tryptophan can be used to mitigate the lethal effects of lead. A pot experiment was conducted, and two weeks before sowing, the level of lead (300 mg kg
-1 ) was maintained by spiking the PbCl2 salt. Pseudomonas fluorescens and L-tryptophan were applied individually as well as in combination to segregate the effect of both in contaminated soil under a completely Randomized Design (CRD). Statistical analysis revealed that plant growth was significantly reduced up to 22% due to lead contamination. However, the interactive approach of PGPR and L-tryptophan significantly improved the plant growth, physiology, and yield with relative productive index (RPI) under a lead-stressed environment. Moreover, integrated use of PGPR and L-tryptophan demonstrated a considerable increase (22%) in lead removal efficiency (LRE) by improving bioconcentration factor (BCF) and translocation factor (TF) for shoot without increasing the lead concentration in achenes. The reduced lead concentration in achene was due to its immobilization in shoot and root by negatively charged particles and improved the lead sequestration in vegetative parts which abridged the translocation of lead into achenes., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)- Published
- 2023
- Full Text
- View/download PDF
9. Decoding the guardians of cotton resilience: A comprehensive exploration of the βCA genes and its role in Verticillium dahliae resistance.
- Author
-
Yang M, Umer MJ, Wang H, Han J, Han J, Liu Q, Zheng J, Cai X, Hou Y, Xu Y, Wang Y, Khan MKR, Ditta A, Liu F, and Zhou Z
- Subjects
- Gossypium genetics, Gossypium metabolism, Phylogeny, Disease Resistance genetics, Gene Expression Regulation, Plant, Plant Diseases genetics, Plant Proteins genetics, Plant Proteins metabolism, Resilience, Psychological, Verticillium metabolism, Ascomycota
- Abstract
Plant Carbonic anhydrases (Cas) have been shown to be stress-responsive enzymes that may play a role in adapting to adverse conditions. Cotton is a significant economic crop in China, with upland cotton (Gossypium hirsutum) being the most widely cultivated species. We conducted genome-wide identification of the βCA gene in six cotton species and preliminary analysis of the βCA gene in upland cotton. In total, 73 βCA genes from six cotton species were identified, with phylogenetic analysis dividing them into five subgroups. GHβCA proteins were predominantly localized in the chloroplast and cytoplasm. The genes exhibited conserved motifs, with motifs 1, 2, and 3 being prominent. GHβCA genes were unevenly distributed across chromosomes and were associated with stress-responsive cis-regulatory elements, including those responding to light, MeJA, salicylic acid, abscisic acid, cell cycle regulation, and defence/stress. Expression analysis indicated that GHβCA6, GHβCA7, GHβCA10, GHβCA15, and GHβCA16 were highly expressed under various abiotic stress conditions, whereas GHβCA3, GHβCA9, GHβCA10, and GHβCA18 had higher expression patterns under Verticillium dahliae infection at different time intervals. In Gossypium thurberi, GthβCA1, GthβCA2, and GthβCA4 showed elevated expression across stress conditions and tissues. Silencing GHβCA10 through VIGS increased Verticillium wilt severity and reduced lignin deposition compared to non-silenced plants. GHβCA10 is crucial for cotton's defense against Verticillium dahliae. Further research is needed to understand the underlying mechanisms and develop strategies to enhance resistance against Verticillium wilt., (© 2023 Scandinavian Plant Physiology Society.)
- Published
- 2023
- Full Text
- View/download PDF
10. Comparative biotic and abiotic effects on greenhouse gas emissions from agricultural ecosystems: application of straw or biochar?
- Author
-
Zhao Y, Zhang A, Zhu X, Han J, Li P, Shen X, Huang S, Jin X, Chen S, Chen J, Liu J, Liu H, Hussain Q, and Chen
- Subjects
- Carbon, Soil chemistry, Ecosystem, Ammonia, Carbon Dioxide analysis, Nitrous Oxide analysis, Soil Microbiology, Charcoal chemistry, Agriculture, Greenhouse Gases, Betaproteobacteria
- Abstract
Farmland has become a significant contributor to greenhouse gas (GHG) emissions, and research has shown that the addition of straw or biochar may be a viable method for mitigating these emissions. However, there is a lack of understanding regarding the comparative biotic and abiotic effects of straw and biochar amendments on GHG emissions. To address this knowledge gap, we conducted a meta-analysis of 100 published papers to quantify the impact of straw and biochar application on GHG emissions. Our findings indicate that straw application significantly increased CO
2 and CH4 emissions from agricultural ecosystems by 46.2% and 113.5%, respectively, but did not have a significant effect on N2 O emissions. Conversely, biochar amendment significantly reduced CO2 , CH4 , and N2 O emissions by an average of 11.0%, 31.7%, and 22.8%, respectively. We also found that straw and biochar amendments increased soil pH, soil organic carbon (SOC), and C/N ratio, and there were significant differences between them. Moreover, straw application significantly increased the microbial biomass carbon (MBC) content and microbial quotient by 37.1% and 20.1%, respectively, while biochar application increased the MBC content by 25.0% without a significant effect on the microbial quotient. Furthermore, both straw and biochar applications promoted the nitrification process and increased the abundance of ammonia-oxidizing bacteria (AOB) by 50.7% with straw and by 57.5% and 75.1% with biochar for ammonia-oxidizing archaea (AOA) and AOB, respectively. The denitrification process was also stimulated by straw or biochar amendment, resulting in an increase in the abundance of nirK by 22.9% and 16.8%, respectively. Biochar amendment additionally increased the abundance of nosZ by 29.4%, indicating that the main reason for reducing N2 O emissions through biochar application is the conversion of NO3 - -N to N2 . Thus, compared to straw application, biochar application is a more effective method for reducing greenhouse gas emissions., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)- Published
- 2023
- Full Text
- View/download PDF
11. Enhanced OER Performance and Dynamic Transition of Surface Reconstruction in LaNiO 3 Thin Films with Nanoparticles Decoration.
- Author
-
Liu H, Xie R, Wang Q, Han J, Han Y, Wang J, Fang H, Qi J, Ding M, Ji W, He B, and Lü W
- Abstract
In an electrocatalytic process, the cognition of the active phase in a catalyst has been regarded as one of the most vital issues, which not only boosts the fundamental understanding of the reaction procedure but also guides the engineering and design for further promising catalysts. Here, based on the oxygen evolution reaction (OER), the stepwise evolution of the dominant active phase is demonstrated in the LaNiO
3 (LNO) catalyst once the single-crystal thin film is decorated by LNO nanoparticles. It is found that the OER performance can be dramatically improved by this decoration, and the catalytic current density at 1.65 V can be enhanced by ≈1000% via ≈109 cm-2 nanoparticle adhesion after extracting the contribution of surface enlargement. Most importantly, a transition of the active phase from LNO to NiOOH via surface reconstruction with the density of LNO nanoparticles is demonstrated. Several mechanisms in terms of this active phase transition are discussed involving lattice orientation-induced change of the surface energy profile, the lattice oxygen participation, and the A/B-site ions leaching during OER cycles. This study suggests that the active phases in transition metal-based OER catalysts can transform with morphology, which should be corresponding to distinct engineering strategies., (© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.)- Published
- 2023
- Full Text
- View/download PDF
12. CDA-SKAG: Predicting circRNA-disease associations using similarity kernel fusion and an attention-enhancing graph autoencoder.
- Author
-
Wang H, Han J, Li H, Duan L, Liu Z, and Cheng H
- Subjects
- Neural Networks, Computer, RNA, Circular, Algorithms
- Abstract
Circular RNAs (circRNAs) constitute a category of circular non-coding RNA molecules whose abnormal expression is closely associated with the development of diseases. As biological data become abundant, a lot of computational prediction models have been used for circRNA-disease association prediction. However, existing prediction models ignore the non-linear information of circRNAs and diseases when fusing multi-source similarities. In addition, these models fail to take full advantage of the vital feature information of high-similarity neighbor nodes when extracting features of circRNAs or diseases. In this paper, we propose a deep learning model, CDA-SKAG, which introduces a similarity kernel fusion algorithm to integrate multi-source similarity matrices to capture the non-linear information of circRNAs or diseases, and construct a circRNA information space and a disease information space. The model embeds an attention-enhancing layer in the graph autoencoder to enhance the associations between nodes with higher similarity. A cost-sensitive neural network is introduced to address the problem of positive and negative sample imbalance, consequently improving our model's generalization capability. The experimental results show that the prediction performance of our model CDA-SKAG outperformed existing circRNA-disease association prediction models. The results of the case studies on lung and cervical cancer suggest that CDA-SKAG can be utilized as an effective tool to assist in predicting circRNA-disease associations.
- Published
- 2023
- Full Text
- View/download PDF
13. A parallel model of DenseCNN and ordered-neuron LSTM for generic and species-specific succinylation site prediction.
- Author
-
Wang H, Zhao H, Zhang J, Han J, and Liu Z
- Subjects
- Neurons, Species Specificity, Lysine metabolism, Protein Processing, Post-Translational
- Abstract
Lysine succinylation (Ksucc) regulates various metabolic processes, participates in vital life processes, and is involved in the occurrence and development of numerous diseases. Accurate recognition of succinylation sites can reveal underlying functional mechanisms and pathogenesis. However, most remain undetected. Moreover, a deep learning architecture focusing on generic and species-specific predictions is still lacking. Thus, we proposed a deep learning-based framework named Deep-Ksucc, combining a dense convolutional network and ordered-neuron long short-term memory in parallel, which took the cascading characteristics of sequence information and physicochemical properties as the input. The results of the generic and species-specific predictions indicated that Deep-Ksucc can identify sequence patterns of different organisms and recognize plenty of succinylation sites. The case study showed that Deep-Ksucc can serve as a reliable tool for biology verification and computer-aided recognition of succinylation sites., (© 2022 Wiley Periodicals LLC.)
- Published
- 2022
- Full Text
- View/download PDF
14. Biochar promotes soil organic carbon sequestration and reduces net global warming potential in apple orchard: A two-year study in the Loess Plateau of China.
- Author
-
Han J, Zhang A, Kang Y, Han J, Yang B, Hussain Q, Wang X, Zhang M, and Khan MA
- Subjects
- Agriculture, Carbon, Carbon Dioxide analysis, Carbon Sequestration, Charcoal, China, Global Warming, Methane analysis, Nitrous Oxide analysis, Malus, Soil
- Abstract
The Loess Plateau is China's primary apple-growing area, and the orchard is a significant source of greenhouse gases (GHGs) emissions due to high nitrogen fertilizer input. Thus, a two-year field study was carried out to investigate the effects of apple wood derived biochar on GHGs emissions during apple orchard production, including soil organic carbon sequestration (SOCSR) and net global warming potential (NGWP) assessments. There are four treatments in this study: 20 t ha
-1 biochar in a non-fertilized plot (B); no biochar in a fertilized plot (F); 20 t ha-1 biochar in a fertilized plot (FB); no biochar in a non-fertilized plot (CK). Results showed that the combined application of biochar and fertilizer stimulated CO2 emissions by 9.25% and 8.39% than either biochar or fertilizer alone. Meanwhile, biochar in fertilized plot increased annual N2 O emissions by 32.6% as compared to fertilized plot without biochar amendment. Compared with CK, biochar had no significant effect on GHG emissions in unfertilized plot. The N2 O emission factor of FB and F were 0.91% and 0.45% respectively in 2017-2018 and they were both 0.34% in 2018-2019. Moreover, compared with CK, the FB and B treatments increased the SOCSR by 316.52% and 354.78%, while, decreased the NGWP by 368.93% and 480.91%, respectively. Thus, biochar application may help reduce the impact of apple production on climate change by sequestering more soil organic carbon and decreasing the NGWP., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021. Published by Elsevier B.V.)- Published
- 2022
- Full Text
- View/download PDF
15. MDCAN-Lys: A Model for Predicting Succinylation Sites Based on Multilane Dense Convolutional Attention Network.
- Author
-
Wang H, Zhao H, Yan Z, Zhao J, and Han J
- Subjects
- Algorithms, Amino Acid Sequence genetics, Amino Acids chemistry, Animals, Computational Biology methods, Databases, Protein, Humans, Machine Learning, Proteins chemistry, Forecasting methods, Lysine chemistry, Protein Processing, Post-Translational physiology, Succinic Acid chemistry
- Abstract
Lysine succinylation is an important post-translational modification, whose abnormalities are closely related to the occurrence and development of many diseases. Therefore, exploring effective methods to identify succinylation sites is helpful for disease treatment and research of related drugs. However, most existing computational methods for the prediction of succinylation sites are still based on machine learning. With the increasing volume of data and complexity of feature representations, it is necessary to explore effective deep learning methods to recognize succinylation sites. In this paper, we propose a multilane dense convolutional attention network, MDCAN-Lys. MDCAN-Lys extracts sequence information, physicochemical properties of amino acids, and structural properties of proteins using a three-way network, and it constructs feature space. For each sub-network, MDCAN-Lys uses the cascading model of dense convolutional block and convolutional block attention module to capture feature information at different levels and improve the abstraction ability of the network. The experimental results of 10-fold cross-validation and independent testing show that MDCAN-Lys can recognize more succinylation sites, which is consistent with the conclusion of the case study. Thus, it is worthwhile to explore deep learning-based methods for the recognition of succinylation sites.
- Published
- 2021
- Full Text
- View/download PDF
16. Multiview Clustering by Joint Latent Representation and Similarity Learning.
- Author
-
Xie D, Zhang X, Gao Q, Han J, Xiao S, and Gao X
- Abstract
Subspace learning-based multiview clustering has achieved impressive experimental results. However, the similarity matrix, which is learned by most existing methods, cannot well characterize both the intrinsic geometric structure of data and the neighbor relationship between data. To consider the fact that original data space does not well characterize the intrinsic geometric structure, we learn the latent representation of data, which is shared by different views, from the latent subspace rather than the original data space by linear transformation. Thus, the learned latent representation has a low-rank structure without solving the nuclear-norm. This reduces the computational complexity. Then, the similarity matrix is adaptively learned from the learned latent representation by manifold learning which well characterizes the local intrinsic geometric structure and neighbor relationship between data. Finally, we integrate clustering, manifold learning, and latent representation into a unified framework and develop a novel subspace learning-based multiview clustering method. Extensive experiments on benchmark datasets demonstrate the superiority of our method.
- Published
- 2020
- Full Text
- View/download PDF
17. Regional Features of MuSK Antibody-Positive Myasthenia Gravis in Northeast China.
- Author
-
Zhang Z, Guan Y, Han J, Li M, Shi M, and Deng H
- Abstract
Objective: To summarize the characteristics of muscle-specific receptor tyrosine kinase antibody-positive myasthenia gravis (MuSK-MG) in Northeast China. Methods: We retrospectively collected 183 confirmed MG patients and divided them into three groups based on the type of serum antibodies: MuSK-MG (14 cases), acetylcholine receptor (AChR)-MG (130 cases), and double-seronegative (DSN)-MG (39 cases). The clinical, diagnostic, therapeutic, and prognosis data were analyzed. Results: MuSK antibody was detected in 26.7% of seronegative MG. The mean age of onset in MuSK-MG was 53.2 ± 13.6 years. Fifty percent of MuSK-MG patients with an onset symptom of pure ocular muscle weakness. The time from onset to other muscle groups' involvement and the time from onset to myasthenic crisis had no significant difference among the three groups ( P > 0.05). The proportion of Osserman classification I in MuSK-MG group was lower than that in DSN-MG group. The proportion of Osserman classification IV in MuSK-MG group was higher than that in the other two groups. The incidences of other coexisting autoimmune diseases in MuSK-MG group were higher. Prognosis after the treatment of steroid combined with tacrolimus for MuSK-MG was similar to AChR-MG treated with steroid combined with an immunosuppressant agent ( P > 0.05). Conclusion: Patients with MuSK-MG in Northeast China have a modestly later onset age and a proportion of patients may have a mild form of the disease with delayed disease progression. We confirmed the existence of a rare ocular MuSK-MG phenotype, a high proportion of coexisting with other autoimmune diseases, and a good response to steroids combined with tacrolimus for our MuSK-MG series., (Copyright © 2020 Zhang, Guan, Han, Li, Shi and Deng.)
- Published
- 2020
- Full Text
- View/download PDF
18. Spectroscopic monitoring of transport processes during loading of ovarian tissue with cryoprotective solutions.
- Author
-
Han J, Sydykov B, Yang H, Sieme H, Oldenhof H, and Wolkers WF
- Subjects
- Animals, Diffusion, Female, Swine, Cryoprotective Agents pharmacology, Ovary drug effects, Ovary metabolism, Spectroscopy, Fourier Transform Infrared
- Abstract
There is an increasing demand for female fertility preservation. Cryopreservation of ovarian cortex tissue by means of vitrification can be done ad-hoc and for pre-pubertal individuals. Obtaining a homogeneous distribution of protective agents in tissues is one of the major hurdles for successful preservation. Therefore, to rationally design vitrification strategies for tissues, it is needed to determine permeation kinetics of cryoprotective agents; to ensure homogeneous distribution while minimizing exposure time and toxicity effects. In this study, Fourier transform infrared spectroscopy (FTIR) was used to monitor diffusion of different components into porcine ovarian cortex tissue. Water fluxes and permeation kinetics of dimethyl sulfoxide (DMSO), glycerol (GLY), ethylene glycol (EG), and propylene glycol (PG) were investigated. Diffusion coefficients derived from FTIR data, were corroborated with differential scanning calorimetry and osmometer measurements. FTIR allowed real-time spectral fingerprinting of tissue during loading with mixtures of protective agents, while discriminating between different components and water. Exposure to vitrification solutions was found to cause drastic initial weight losses, which could be correlated with spectral features. Use of heavy water allowed distinguishing water fluxes associated with dehydration and permeation, both of which were found to precede permeation of cryoprotective agents. Overall, DMSO and EG were found to permeate faster than GLY and PG. In mixtures, however, solutes behave differently. The non-invasive spectroscopic method described here to study permeation of vitrification solution components into ovarian tissue can be applied to many other types of engineered constructs, tissues, and possibly organs.
- Published
- 2019
- Full Text
- View/download PDF
19. Factors Affecting the Membrane Permeability Barrier Function of Cells during Preservation Technologies.
- Author
-
Wolkers WF, Oldenhof H, Tang F, Han J, Bigalk J, and Sieme H
- Subjects
- Water metabolism, Cell Membrane Permeability, Cryopreservation
- Abstract
Cellular membranes are exposed to extreme conditions during the processing steps involved in cryopreservation (and freeze-drying) of cells. The first processing step involves adding protective agents. Exposing cells to protective agents causes fluxes of both water and solutes (i.e., permeating cryoprotective agents) across the cellular membrane, resulting in cell volume changes and possibly osmotic stress. In addition, protective molecules may interact with lipids, which may lead to membrane structural changes and permeabilization. After loading with protective agents, subsequent freezing exposes cells to severe osmotic and mechanical stresses, caused by extra and/or intracellular ice formation and a drastically increased solute concentration in the unfrozen fraction. Furthermore, cellular membranes undergo thermotropic and lyotropic phase transitions during cooling and freezing, which drastically alter the membrane permeability and its barrier function. In this article, it is shown that membrane permeability to water and solutes is dependent on the temperature, medium osmolality, types of solutes present, cell hydration level, and absence or presence of ice. Freezing most drastically alters the membrane permeability barrier function, which is reflected as a change in the activation energy for water transport. In addition, membranes become temporarily leaky during freezing-induced fluid-to-gel membrane phase transitions, resulting in the uptake of impermeable solutes.
- Published
- 2019
- Full Text
- View/download PDF
20. In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2-graphene with enhanced photocatalytic activity.
- Author
-
Jiang B, Tian C, Zhou W, Wang J, Xie Y, Pan Q, Ren Z, Dong Y, Fu D, Han J, and Fu H
- Subjects
- Catalysis, Microscopy, Electron, Scanning, Molecular Structure, Surface-Active Agents, Vacuum, Graphite chemistry, Photochemistry, Titanium chemistry
- Abstract
We present a facile route for the preparation of TiO(2)-graphene composites by in situ growth of TiO(2) in the interlayer of inexpensive expanded graphite (EG) under solvothermal conditions. A vacuum-assisted technique combined with the use of a surfactant (cetyltrimethylammonium bromide) plays a key role in the fabrication of such composites. Firstly, the vacuum environment promotes full infusion of the initial solution containing Ti(OBu)(4) and the surfactant into the interlayers of EG. Subsequently, numerous TiO(2) nanoparticles uniformly grow in situ in the interlayers with the help of the surfactant, which facilitates the exfoliation of EG under the solvothermal conditions in ethanol, eventually forming TiO(2)-graphene composites. The as-prepared samples have been characterized by Raman and FTIR spectroscopies, SEM, TEM, AFM, and thermogravimetic analysis. It is shown that a large number of TiO(2) nanoparticles homogeneously cover the surface of high-quality graphene sheets. The graphene exhibits a multi-layered structure (5-7 layers). Notably, the TiO(2)-graphene composite (only 30 wt % of which is TiO(2)) synthesized by subsequent thermal treatment at high temperature under nitrogen shows high photocatalytic activity in the degradation of phenol under visible and UV lights in comparison with bare Degussa P25. The enhanced photocatalytic performance is attributed to increased charge separation, improved light absorbance and light absorption width, and high adsorptivity for pollutants., (Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.