1. Thermalization and criticality on an analogue-digital quantum simulator.
- Author
-
Andersen TI, Astrakhantsev N, Karamlou AH, Berndtsson J, Motruk J, Szasz A, Gross JA, Schuckert A, Westerhout T, Zhang Y, Forati E, Rossi D, Kobrin B, Paolo AD, Klots AR, Drozdov I, Kurilovich V, Petukhov A, Ioffe LB, Elben A, Rath A, Vitale V, Vermersch B, Acharya R, Beni LA, Anderson K, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Ballard B, Bardin JC, Bengtsson A, Bilmes A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Browne DA, Buchea B, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Cabrera A, Campero J, Chang HS, Chen Z, Chiaro B, Claes J, Cleland AY, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Das S, Debroy DM, Lorenzo L, Barba ADT, Demura S, Donohoe P, Dunsworth A, Earle C, Eickbusch A, Elbag AM, Elzouka M, Erickson C, Faoro L, Fatemi R, Ferreira VS, Burgos LF, Fowler AG, Foxen B, Ganjam S, Gasca R, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Graumann D, Greene A, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heslin S, Heu P, Hill G, Hoffmann MR, Huang HY, Huang T, Huff A, Huggins WJ, Isakov SV, Jeffrey E, Jiang Z, Jones C, Jordan S, Joshi C, Juhas P, Kafri D, Kang H, Kechedzhi K, Khaire T, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klimov P, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Langley BW, Laptev P, Lau KM, Guevel LL, Ledford J, Lee J, Lee KW, Lensky YD, Lester BJ, Li WY, Lill AT, Liu W, Livingston WP, Locharla A, Lundahl D, Lunt A, Madhuk S, Maloney A, Mandrà S, Martin LS, Martin O, Martin S, Maxfield C, McClean JR, McEwen M, Meeks S, Miao KC, Mieszala A, Molina S, Montazeri S, Morvan A, Movassagh R, Neill C, Nersisyan A, Newman M, Nguyen A, Nguyen M, Ni CH, Niu MY, Oliver WD, Ottosson K, Pizzuto A, Potter R, Pritchard O, Pryadko LP, Quintana C, Reagor MJ, Rhodes DM, Roberts G, Rocque C, Rosenberg E, Rubin NC, Saei N, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Sivak V, Skruzny J, Small S, Smith WC, Springer S, Sterling G, Suchard J, Szalay M, Sztein A, Thor D, Torres A, Torunbalci MM, Vaishnav A, Vdovichev S, Villalonga B, Heidweiller CV, Waltman S, Wang SX, White T, Wong K, Woo BWK, Xing C, Yao ZJ, Yeh P, Ying B, Yoo J, Yosri N, Young G, Zalcman A, Zhu N, Zobrist N, Neven H, Babbush R, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Vidal G, Roushan P, Läuchli AM, Abanin DA, and Mi X
- Abstract
Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators
1,2 . Unlocking the full potential of such systems towards this goal requires flexible initial state preparation, precise time evolution and extensive probes for final state characterization. Here we present a quantum simulator comprising 69 superconducting qubits that supports both universal quantum gates and high-fidelity analogue evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. This hybrid platform features more versatile measurement capabilities compared with analogue-only simulators, which we leverage here to reveal a coarsening-induced breakdown of Kibble-Zurek scaling predictions3 in the XY model, as well as signatures of the classical Kosterlitz-Thouless phase transition4 . Moreover, the digital gates enable precise energy control, allowing us to study the effects of the eigenstate thermalization hypothesis5-7 in targeted parts of the eigenspectrum. We also demonstrate digital preparation of pairwise-entangled dimer states, and image the transport of energy and vorticity during subsequent thermalization in analogue evolution. These results establish the efficacy of superconducting analogue-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics., Competing Interests: Competing interests: A provisional patent application has been submitted for the analogue calibration scheme, titled ‘High-accuracy calibration of an analog quantum simulator’ (application number 63/639,509). The listed inventors are T.I.A., J.A.G., D.A.A. and X.M. The other authors declare no competing interests., (© 2025. The Author(s).)- Published
- 2025
- Full Text
- View/download PDF