1. Increased Ion Temperature and Neutron Yield Observed in Magnetized Indirectly Driven D_{2}-Filled Capsule Implosions on the National Ignition Facility.
- Author
-
Moody JD, Pollock BB, Sio H, Strozzi DJ, Ho DD, Walsh CA, Kemp GE, Lahmann B, Kucheyev SO, Kozioziemski B, Carroll EG, Kroll J, Yanagisawa DK, Angus J, Bachmann B, Bhandarkar SD, Bude JD, Divol L, Ferguson B, Fry J, Hagler L, Hartouni E, Herrmann MC, Hsing W, Holunga DM, Izumi N, Javedani J, Johnson A, Khan S, Kalantar D, Kohut T, Logan BG, Masters N, Nikroo A, Orsi N, Piston K, Provencher C, Rowe A, Sater J, Skulina K, Stygar WA, Tang V, Winters SE, Zimmerman G, Adrian P, Chittenden JP, Appelbe B, Boxall A, Crilly A, O'Neill S, Davies J, Peebles J, and Fujioka S
- Abstract
The application of an external 26 Tesla axial magnetic field to a D_{2} gas-filled capsule indirectly driven on the National Ignition Facility is observed to increase the ion temperature by 40% and the neutron yield by a factor of 3.2 in a hot spot with areal density and temperature approaching what is required for fusion ignition [1]. The improvements are determined from energy spectral measurements of the 2.45 MeV neutrons from the D(d,n)^{3}He reaction, and the compressed central core B field is estimated to be ∼4.9 kT using the 14.1 MeV secondary neutrons from the D(T,n)^{4}He reactions. The experiments use a 30 kV pulsed-power system to deliver a ∼3 μs current pulse to a solenoidal coil wrapped around a novel high-electrical-resistivity AuTa_{4} hohlraum. Radiation magnetohydrodynamic simulations are consistent with the experiment.
- Published
- 2022
- Full Text
- View/download PDF