1. Use of Carbon Fiber Implants to Improve the Safety and Efficacy of Radiation Therapy for Spine Tumor Patients.
- Author
-
Lam FC, Guru S, AbuReesh D, Hori YS, Chuang C, Liu L, Wang L, Gu X, Szalkowski GA, Wang Z, Wohlers C, Tayag A, Emrich SC, Ustrzynski L, Zygourakis CC, Desai A, Hayden Gephart M, Byun J, Pollom EL, Rahimy E, Soltys S, Park DJ, and Chang SD
- Abstract
Current standard of care treatment for patients with spine tumors includes multidisciplinary approaches, including the following: (1) surgical tumor debulking, epidural spinal cord decompression, and spine stabilization techniques; (2) systemic chemo/targeted therapies; (3) radiation therapy; and (4) surveillance imaging for local disease control and recurrence. Titanium pedicle screw and rod fixation have become commonplace in the spine surgeon's armamentarium for the stabilization of the spine following tumor resection and separation surgery. However, the high degree of imaging artifacts seen with titanium implants on postoperative CT and MRI scans can significantly hinder the accurate delineation of vertebral anatomy and adjacent neurovascular structures to allow for the safe and effective planning of downstream radiation therapies and detection of disease recurrence. Carbon fiber-reinforced polyetheretherketone (CFR-PEEK) spine implants have emerged as a promising alternative to titanium due to the lack of artifact signals on CT and MRI, allowing for more accurate and safe postoperative radiation planning. In this article, we review the tenants of the surgical and radiation management of spine tumors and discuss the safety, efficacy, and current limitations of CFR-PEEK spine implants in the multidisciplinary management of spine oncology patients.
- Published
- 2025
- Full Text
- View/download PDF