1. Efficient Regeneration of Transgenic Rice from Embryogenic Callus via Agrobacterium -Mediated Transformation: A Case Study Using GFP and Apple MdFT1 Genes.
- Author
-
Do VG, Kim S, Win NM, Kwon SI, Kweon H, Yang S, Park J, Do G, and Lee Y
- Abstract
Genetic transformation is a critical tool for gene manipulation and functional analyses in plants, enabling the exploration of key phenotypes and agronomic traits at the genetic level. While dicotyledonous plants offer various tissues for in vitro culture and transformation, monocotyledonous plants, such as rice, have limited options. This study presents an efficient method for genetically transforming rice ( Oryza sativa L.) using seed-derived embryogenic calli as explants. Two target genes were utilized to assess regeneration efficiency: green fluorescent protein ( eGFP ) and the apple FLOWERING LOCUS T ( FT )-like gene ( MdFT1 ). Antisense MdFT1 was cloned into a vector controlled by the rice α-amylase 3D (Ramy3D) promoter, while eGFP was fused to Cas9 under the Ubi promoter. These vectors were introduced separately into rice embryogenic calli from two Korean cultivars using Agrobacterium -mediated transformation. Transgenic seedlings were successfully regenerated via hygromycin selection using an in vitro cultivation system. PCR confirmed stable transgene integration in the transgenic calli and their progeny. Fluorescence microscopy revealed eGFP expression, and antisense MdFT1 -expressing lines exhibited notable phenotypic changes, including variations in plant height and grain quality. High transformation efficiency and regeneration frequency were achieved for both tested cultivars. This study demonstrated the effective use of seed-derived embryogenic calli for rice transformation, offering a promising approach for developing transgenic plants in monocot species.
- Published
- 2024
- Full Text
- View/download PDF