1. Momentum-Space Observation of Optically Excited Nonthermal Electrons in Graphene with Persistent Pseudospin Polarization.
- Author
-
Bakalis J, Chernov S, Li Z, Kunin A, Withers ZH, Cheng S, Adler A, Zhao P, Corder C, White MG, Schönhense G, Du X, Kawakami RK, and Allison TK
- Abstract
The unique optical properties of graphene, with broadband absorption and ultrafast response, make it a critical component of optoelectronic and spintronic devices. Using time-resolved momentum microscopy with high data rate and high dynamic range, we report momentum-space measurements of electrons promoted to the graphene conduction band with visible light and their subsequent relaxation. We observe a pronounced nonthermal distribution of nascent photoexcited electrons with lattice pseudospin polarization in remarkable agreement with results of simple tight-binding theory. By varying the excitation fluence, we vary the relative importance of electron-electron vs electron-phonon scattering in the relaxation of the initial distribution. Increasing the excitation fluence results in increased noncollinear electron-electron scattering and reduced pseudospin polarization, although up-scattered electrons retain a degree of polarization. These detailed momentum-resolved electron dynamics in graphene demonstrate the capabilities of high-performance time-resolved momentum microscopy in the study of 2D materials and can inform the design of graphene devices.
- Published
- 2024
- Full Text
- View/download PDF