12 results on '"Lebourgeois, François"'
Search Results
2. No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation.
- Author
-
Klesse S, Peters RL, Alfaro-Sánchez R, Badeau V, Baittinger C, Battipaglia G, Bert D, Biondi F, Bosela M, Budeanu M, Čada V, Camarero JJ, Cavin L, Claessens H, Cretan AM, Čufar K, de Luis M, Dorado-Liñán I, Dulamsuren C, Espelta JM, Garamszegi B, Grabner M, Gricar J, Hacket-Pain A, Hansen JK, Hartl C, Hevia A, Hobi M, Janda P, Jump AS, Kašpar J, Kazimirović M, Keren S, Kreyling J, Land A, Latte N, Lebourgeois F, Leuschner C, Lévesque M, Longares LA, Del Castillo EM, Menzel A, Merela M, Mikoláš M, Motta R, Muffler L, Neycken A, Nola P, Panayotov M, Petritan AM, Petritan IC, Popa I, Prislan P, Levanič T, Roibu CC, Rubio-Cuadrado Á, Sánchez-Salguero R, Šamonil P, Stajić B, Svoboda M, Tognetti R, Toromani E, Trotsiuk V, van der Maaten E, van der Maaten-Theunissen M, Vannoppen A, Vašíčková I, von Arx G, Wilmking M, Weigel R, Zlatanov T, Zang C, and Buras A
- Subjects
- Europe, Droughts, Water metabolism, Temperature, Forests, Fagus growth & development, Fagus physiology, Climate Change
- Abstract
With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (Fagus sylvatica L.) trees from 2118 sites, we applied a linear mixed-effects modeling framework to (i) explain variation in climate-dependent growth and (ii) project growth for the near future (2021-2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952-2011), the model yielded high regional explanatory power (R
2 = 0.38-0.72). Considering a moderate climate change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%-18% (interquartile range) in northwestern Central Europe and by 11%-21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%-24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (-10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability., (© 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.)- Published
- 2024
- Full Text
- View/download PDF
3. Identifying drivers of non-stationary climate-growth relationships of European beech.
- Author
-
Leifsson C, Buras A, Klesse S, Baittinger C, Bat-Enerel B, Battipaglia G, Biondi F, Stajić B, Budeanu M, Čada V, Cavin L, Claessens H, Čufar K, de Luis M, Dorado-Liñán I, Dulamsuren C, Garamszegi B, Grabner M, Hacket-Pain A, Hansen JK, Hartl C, Huang W, Janda P, Jump AS, Kazimirović M, Knutzen F, Kreyling J, Land A, Latte N, Lebourgeois F, Leuschner C, Longares LA, Martinez Del Castillo E, Menzel A, Motta R, Muffler-Weigel L, Nola P, Panayatov M, Petritan AM, Petritan IC, Popa I, Roibu CC, Rubio-Cuadrado Á, Rydval M, Scharnweber T, Camarero JJ, Svoboda M, Toromani E, Trotsiuk V, van der Maaten-Theunissen M, van der Maaten E, Weigel R, Wilmking M, Zlatanov T, Rammig A, and Zang CS
- Subjects
- Forests, Trees growth & development, Trees physiology, Fagus growth & development, Fagus physiology, Climate Change, Droughts
- Abstract
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Revealing legacy effects of extreme droughts on tree growth of oaks across the Northern Hemisphere.
- Author
-
Bose AK, Doležal J, Scherrer D, Altman J, Ziche D, Martínez-Sancho E, Bigler C, Bolte A, Colangelo M, Dorado-Liñán I, Drobyshev I, Etzold S, Fonti P, Gessler A, Kolář T, Koňasová E, Korznikov KA, Lebourgeois F, Lucas-Borja ME, Menzel A, Neuwirth B, Nicolas M, Omelko AM, Pederson N, Petritan AM, Rigling A, Rybníček M, Scharnweber T, Schröder J, Silla F, Sochová I, Sohar K, Ukhvatkina ON, Vozmishcheva AS, Zweifel R, and Camarero JJ
- Subjects
- Droughts, Climate, Seasons, Forests, Climate Change, Trees, Quercus physiology
- Abstract
Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, deciduous oaks (Quercus spp.) are increasingly reported as replacing dying conifers across the Northern Hemisphere. Yet, our knowledge on the growth responses of these oaks to drought is incomplete, especially regarding post-drought legacy effects. The objectives of this study were to determine the occurrence, duration, and magnitude of legacy effects of extreme droughts and how that vary across species, sites, and drought characteristics. The legacy effects were quantified by the deviation of observed from expected radial growth indices in the period 1940-2016. We used stand-level chronologies from 458 sites and 21 oak species primarily from Europe, north-eastern America, and eastern Asia. We found that legacy effects of droughts could last from 1 to 5 years after the drought and were more prolonged in dry sites. Negative legacy effects (i.e., lower growth than expected) were more prevalent after repetitive droughts in dry sites. The effect of repetitive drought was stronger in Mediterranean oaks especially in Quercus faginea. Species-specific analyses revealed that Q. petraea and Q. macrocarpa from dry sites were more negatively affected by the droughts while growth of several oak species from mesic sites increased during post-drought years. Sites showing positive correlations to winter temperature showed little to no growth depression after drought, whereas sites with a positive correlation to previous summer water balance showed decreased growth. This may indicate that although winter warming favors tree growth during droughts, previous-year summer precipitation may predispose oak trees to current-year extreme droughts. Our results revealed a massive role of repetitive droughts in determining legacy effects and highlighted how growth sensitivity to climate, drought seasonality and species-specific traits drive the legacy effects in deciduous oak species., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have influenced the research reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests.
- Author
-
Salomón RL, Peters RL, Zweifel R, Sass-Klaassen UGW, Stegehuis AI, Smiljanic M, Poyatos R, Babst F, Cienciala E, Fonti P, Lerink BJW, Lindner M, Martinez-Vilalta J, Mencuccini M, Nabuurs GJ, van der Maaten E, von Arx G, Bär A, Akhmetzyanov L, Balanzategui D, Bellan M, Bendix J, Berveiller D, Blaženec M, Čada V, Carraro V, Cecchini S, Chan T, Conedera M, Delpierre N, Delzon S, Ditmarová Ľ, Dolezal J, Dufrêne E, Edvardsson J, Ehekircher S, Forner A, Frouz J, Ganthaler A, Gryc V, Güney A, Heinrich I, Hentschel R, Janda P, Ježík M, Kahle HP, Knüsel S, Krejza J, Kuberski Ł, Kučera J, Lebourgeois F, Mikoláš M, Matula R, Mayr S, Oberhuber W, Obojes N, Osborne B, Paljakka T, Plichta R, Rabbel I, Rathgeber CBK, Salmon Y, Saunders M, Scharnweber T, Sitková Z, Stangler DF, Stereńczak K, Stojanović M, Střelcová K, Světlík J, Svoboda M, Tobin B, Trotsiuk V, Urban J, Valladares F, Vavrčík H, Vejpustková M, Walthert L, Wilmking M, Zin E, Zou J, and Steppe K
- Subjects
- Climate, Droughts, Ecosystem, Norway, Picea, Pinus sylvestris, Soil, Trees, Water, Climate Change, Dehydration, Ecology, Forests, Infrared Rays
- Abstract
Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
6. The within-population variability of leaf spring and autumn phenology is influenced by temperature in temperate deciduous trees.
- Author
-
Denéchère R, Delpierre N, Apostol EN, Berveiller D, Bonne F, Cole E, Delzon S, Dufrêne E, Gressler E, Jean F, Lebourgeois F, Liu G, Louvet JM, Parmentier J, Soudani K, and Vincent G
- Subjects
- Humans, Plant Leaves, Seasons, Temperature, Ecosystem, Trees
- Abstract
Leaf phenology is a major driver of ecosystem functioning in temperate forests and a robust indicator of climate change. Both the inter-annual and inter-population variability of leaf phenology have received much attention in the literature; in contrast, the within-population variability of leaf phenology has been far less studied. Beyond its impact on individual tree physiological processes, the within-population variability of leaf phenology can affect the estimation of the average budburst or leaf senescence dates at the population scale. Here, we monitored the progress of spring and autumn leaf phenology over 14 tree populations (9 tree species) in six European forests over the period of 2011 to 2018 (yielding 16 site-years of data for spring, 14 for autumn). We monitored 27 to 512 (with a median of 62) individuals per population. We quantified the within-population variability of leaf phenology as the standard deviation of the distribution of individual dates of budburst or leaf senescence (SD
BBi and SDLSi , respectively). Given the natural variability of phenological dates occurring in our tree populations, we estimated from the data that a minimum sample size of 28 (resp. 23) individuals, are required to estimate SDBBi (resp. SDLSi ) with a precision of 3 (resp. 7) days. The within-population of leaf senescence (average SDLSi = 8.5 days) was on average two times larger than for budburst (average SDBBi = 4.0 days). We evidenced that warmer temperature during the budburst period and a late average budburst date were associated with a lower SDBBi , as a result of a quicker spread of budburst in tree populations, with a strong species effect. Regarding autumn phenology, we observed that later senescence and warm temperatures during the senescence period were linked with a high SDLSi , with a strong species effect. The shares of variance explained by our models were modest suggesting that other factors likely influence the within-population variation in leaf phenology. For instance, a detailed analysis revealed that summer temperatures were negatively correlated with a lower SDLSi .- Published
- 2021
- Full Text
- View/download PDF
7. Which oak provenances for the 22nd century in Western Europe? Dendroclimatology in common gardens.
- Author
-
Bert D, Lebourgeois F, Ponton S, Musch B, and Ducousso A
- Subjects
- Droughts, Europe, Gardens, Seasons, Temperature, Climate Change, Quercus physiology, Stress, Physiological, Trees growth & development
- Abstract
The current distribution area of the two sympatric oaks Quercus petraea and Q. robur covers most of temperate Western Europe. Depending on their geographic location, populations of these trees are exposed to different climate constraints, to which they are adapted. Comparing the performances of trees from contrasting populations provides the insight into their expected resilience to future climate change required for forest management. In this study, the descendants of 24 Q. petraea and two Q. robur provenances selected from sites throughout Europe were grown for 20 years in three common gardens with contrasting climates. The 2420 sampled trees allowed the assessments of the relationship between radial growth and climate. An analysis of 15-year chronologies of ring widths, with different combinations of climate variables, revealed different response patterns between provenances and between common gardens. As expected, provenances originating from sites with wet summers displayed the strongest responses to summer drought, particularly in the driest common garden. All provenances displayed positive significant relationships between the temperature of the previous winter and radial growth when grown in the common garden experiencing the mildest winter temperatures. Only eastern provenances from continental cold climates also clearly expressed this limitation of growth by cold winter temperatures in the other two common gardens. However, ecological distance, calculated on the basis of differences in climate between the site of origin and the common garden, was not clearly related to the radial growth responses of the provenances. This suggests that the gradient of genetic variability among the selected provenances was not strictly structured according to climate gradients. Based on these results, we provide guidelines for forest managers for the assisted migration of Quercus petraea and Q. robur provenances., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
8. Climatically controlled reproduction drives interannual growth variability in a temperate tree species.
- Author
-
Hacket-Pain AJ, Ascoli D, Vacchiano G, Biondi F, Cavin L, Conedera M, Drobyshev I, Liñán ID, Friend AD, Grabner M, Hartl C, Kreyling J, Lebourgeois F, Levanič T, Menzel A, van der Maaten E, van der Maaten-Theunissen M, Muffler L, Motta R, Roibu CC, Popa I, Scharnweber T, Weigel R, Wilmking M, and Zang CS
- Subjects
- Climate Change, Forests, Reproduction, Fagus, Trees growth & development
- Abstract
Climatically controlled allocation to reproduction is a key mechanism by which climate influences tree growth and may explain lagged correlations between climate and growth. We used continent-wide datasets of tree-ring chronologies and annual reproductive effort in Fagus sylvatica from 1901 to 2015 to characterise relationships between climate, reproduction and growth. Results highlight that variable allocation to reproduction is a key factor for growth in this species, and that high reproductive effort ('mast years') is associated with stem growth reduction. Additionally, high reproductive effort is associated with previous summer temperature, creating lagged climate effects on growth. Consequently, understanding growth variability in forest ecosystems requires the incorporation of reproduction, which can be highly variable. Our results suggest that future response of growth dynamics to climate change in this species will be strongly influenced by the response of reproduction., (© 2018 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
9. Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.).
- Author
-
Trouvé R, Bontemps JD, Seynave I, Collet C, and Lebourgeois F
- Subjects
- France, Population Density, Quercus growth & development, Stress, Physiological, Trees growth & development, Vapor Pressure, Droughts, Environment, Quercus physiology, Trees physiology
- Abstract
Even-aged forest stands are competitive communities where competition for light gives advantages to tall individuals, thereby inducing a race for height. These same individuals must however balance this competitive advantage with height-related mechanical and hydraulic risks. These phenomena may induce variations in height-diameter growth relationships, with primary dependences on stand density and tree social status as proxies for competition pressure and access to light, and on availability of local environmental resources, including water. We aimed to investigate the effects of stand density, tree social status and water stress on the individual height-circumference growth allocation (Δh-Δc), in even-aged stands of Quercus petraea Liebl. (sessile oak). Within-stand Δc was used as surrogate for tree social status. We used an original long-term experimental plot network, set up in the species production area in France, and designed to explore stand dynamics on a maximum density gradient. Growth allocation was modelled statistically by relating the shape of the Δh-Δc relationship to stand density, stand age and water deficit. The shape of the Δh-Δc relationship shifted from linear with a moderate slope in open-grown stands to concave saturating with an initial steep slope in closed stands. Maximum height growth was found to follow a typical mono-modal response to stand age. In open-grown stands, increasing summer soil water deficit was found to decrease height growth relative to radial growth, suggesting hydraulic constraints on height growth. A similar pattern was found in closed stands, the magnitude of the effect however lowering from suppressed to dominant trees. We highlight the high phenotypic plasticity of growth in sessile oak trees that further adapt their allocation scheme to their environment. Stand density and tree social status were major drivers of growth allocation variations, while water stress had a detrimental effect on height in the Δh-Δc allocation., (© The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2015
- Full Text
- View/download PDF
10. Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France.
- Author
-
Cuny HE, Rathgeber CB, Lebourgeois F, Fortin M, and Fournier M
- Subjects
- France, Plant Leaves growth & development, Plant Shoots growth & development, Seasons, Species Specificity, Time Factors, Trees growth & development, Abies growth & development, Picea growth & development, Pinus sylvestris growth & development, Wood growth & development
- Abstract
We investigated whether timing and rate of growth are related to the life strategies and fitness of three conifer species. Intra-annual dynamics of wood formation, shoot elongation and needle phenology were monitored over 3 years in five Norway spruces (Picea abies (L.) Karst.), five Scots pines (Pinus sylvestris L.) and five silver firs (Abies alba Mill.) grown intermixed. For the three species, the growing season (delimited by cambial activity onset and cessation) lasted about 4 months, while the whole process of wood formation lasted 5-6 months. Needle unfolding and shoot elongation followed the onset of cambial activity and lasted only one-third of the season. Pines exhibited an 'extensive strategy' of cambial activity, with long durations but low growth rates, while firs and spruces adopted an 'intensive strategy' with shorter durations but higher growth rates. We estimated that about 75% of the annual radial increment variability was attributable to the rate of cell production, and only 25% to its duration. Cambial activity rates culminated at the same time for the three species, whereas shoot elongation reached its maximal rate earlier in pines. Results show that species-specific life strategies are recognizable through functional traits of intra-annual growth dynamics. The opposition between Scots pine extensive strategy and silver fir and Norway spruce intensive strategy supports the theory that pioneer species are greater resource expenders and develop riskier life strategies to capture resources, while shade-tolerant species utilize resources more efficiently and develop safer life strategies. Despite different strategies, synchronicity of the maximal rates of cambial activity suggests a strong functional convergence between co-existing conifer species, resulting in head-on competition for resources.
- Published
- 2012
- Full Text
- View/download PDF
11. Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models.
- Author
-
Lebourgeois F, Pierrat JC, Perez V, Piedallu C, Cecchini S, and Ulrich E
- Subjects
- Ferns growth & development, France, Geography, Humidity, Plant Leaves growth & development, Rain, Solar Energy, Temperature, Time Factors, Trees classification, Climate Change, Environmental Monitoring, Models, Biological, Trees growth & development
- Abstract
After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.
- Published
- 2010
- Full Text
- View/download PDF
12. Variation in cold hardiness and carbohydrate concentration from dormancy induction to bud burst among provenances of three European oak species.
- Author
-
Morin X, Améglio T, Ahas R, Kurz-Besson C, Lanta V, Lebourgeois F, Miglietta F, and Chuine I
- Subjects
- Climate, Europe, Fructose metabolism, Geography, Glucose metabolism, Hydrolysis, Quercus metabolism, Solubility, Species Specificity, Starch chemistry, Starch metabolism, Sucrose metabolism, Temperature, Carbohydrates chemistry, Cold Temperature, Quercus physiology
- Abstract
Although cold hardiness is known to be a major determinant of tree species distribution, its dynamics and the factors that regulate it remain poorly understood. Variation in cold hardiness and carbohydrate concentration, from dormancy induction until bud burst, were investigated in populations of two deciduous (Quercus robur L. and Quercus pubescens Willd.) and one evergreen (Quercus ilex L.) European oak. Mean cold hardiness values in January were -56, -45 and -27 degrees C for Q. robur, Q. pubescens and Q. ilex, respectively. Soluble carbohydrate concentrations were closely related to instantaneous cold hardiness, estimated by the electrolyte leakage method, whereas total carbohydrate concentration was related to maximum cold hardiness. Both cold hardiness and carbohydrate concentration showed a close linear relationship with temperatures at the location of the sampled population. Our results show that temporal variation in both the inter- and intraspecific cold hardiness in European oaks can be related to variations in the concentrations of soluble carbohydrates and that these relationships appear to be driven by temperature.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.